Lie algebras/Topology
Goldman–Turaev formality from the Knizhnik–Zamolodchikov connection
[Connexion de Knizhnik–Zamolodchikov et formalité pour la bigèbre de Lie de Goldman–Turaev]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 11, pp. 1138-1147.

Soit Σ une variété orientable de dimension 2, de genre g et avec n composants de bord. L'espace Cπ1(Σ)/[Cπ1(Σ),Cπ1(Σ)] a une structure de bigèbre de Lie de Goldman–Turaev définie par les intersections et les autointersections des courbes sur Σ. La bigèbre de Lie graduée associée (par rapport à la filtration naturelle) est décrite par l'espace des mots cycliques en H1(Σ). En genre zéro, l'isomorphisme entre ces deux bigèbres de Lie a été établi dans [13] en utilisant l'intégrale de Kontsevich, et dans [2] en utilisant les solutions du problème de Kashiwara–Vergne.

Dans cette note, nous donnons une démonstration élémentaire de cet isomorphisme sur C. Notre démonstration utilise la connexion de Knizhnik–Zamolodchikov sur C\{z1,zn}. Nous montrons que cet isomorphisme dépend naturellement de la structure complexe sur Σ. La preuve de l'isomorphisme pour le crochet de Lie est une version d'un résultat classique de Hitchin [9]. D'une manière surprenante, un argument similaire s'applique également au cocrochet.

De plus, nous montrons que l'isomorphisme de formalité construit dans cette note coïncide avec l'isomorphisme défini dans [2] si on choisit la solution du problème de Kashiwara–Vergne, qui correspond à l'associateur de Knizhnik–Zamolodchikov.

For an oriented 2-dimensional manifold Σ of genus g with n boundary components, the space Cπ1(Σ)/[Cπ1(Σ),Cπ1(Σ)] carries the Goldman–Turaev Lie bialgebra structure defined in terms of intersections and self-intersections of curves. Its associated graded Lie bialgebra (under the natural filtration) is described by cyclic words in H1(Σ) and carries the structure of a necklace Schedler Lie bialgebra. The isomorphism between these two structures in genus zero has been established in [13] using Kontsevich integrals and in [2] using solutions of the Kashiwara–Vergne problem.

In this note, we give an elementary proof of this isomorphism over C. It uses the Knizhnik–Zamolodchikov connection on C\{z1,zn}. We show that the isomorphism naturally depends on the complex structure on the surface. The proof of the isomorphism for Lie brackets is a version of the classical result by Hitchin [9]. Surprisingly, it turns out that a similar proof applies to cobrackets.

Furthermore, we show that the formality isomorphism constructed in this note coincides with the one defined in [2] if one uses the solution of the Kashiwara–Vergne problem corresponding to the Knizhnik–Zamolodchikov associator.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.10.013
Alekseev, Anton 1 ; Naef, Florian 1

1 Department of Mathematics, University of Geneva, 2-4, rue du Lièvre, C.P. 64, CH-1211 Geneva, Switzerland
@article{CRMATH_2017__355_11_1138_0,
     author = {Alekseev, Anton and Naef, Florian},
     title = {Goldman{\textendash}Turaev formality from the {Knizhnik{\textendash}Zamolodchikov} connection},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1138--1147},
     publisher = {Elsevier},
     volume = {355},
     number = {11},
     year = {2017},
     doi = {10.1016/j.crma.2017.10.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.10.013/}
}
TY  - JOUR
AU  - Alekseev, Anton
AU  - Naef, Florian
TI  - Goldman–Turaev formality from the Knizhnik–Zamolodchikov connection
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1138
EP  - 1147
VL  - 355
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.10.013/
DO  - 10.1016/j.crma.2017.10.013
LA  - en
ID  - CRMATH_2017__355_11_1138_0
ER  - 
%0 Journal Article
%A Alekseev, Anton
%A Naef, Florian
%T Goldman–Turaev formality from the Knizhnik–Zamolodchikov connection
%J Comptes Rendus. Mathématique
%D 2017
%P 1138-1147
%V 355
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.10.013/
%R 10.1016/j.crma.2017.10.013
%G en
%F CRMATH_2017__355_11_1138_0
Alekseev, Anton; Naef, Florian. Goldman–Turaev formality from the Knizhnik–Zamolodchikov connection. Comptes Rendus. Mathématique, Tome 355 (2017) no. 11, pp. 1138-1147. doi : 10.1016/j.crma.2017.10.013. http://www.numdam.org/articles/10.1016/j.crma.2017.10.013/

[1] Alekseev, A.; Enriques, B.; Torossian, C. Drinfeld associators, braid groups and explicit solutions of the Kashiwara–Vergne equations, Publ. Math. Inst. Hautes Études Sci., Volume 112 (2010) no. 1, pp. 143-189

[2] Alekseev, A.; Kawazumi, N.; Kuno, Y.; Naef, F. The Goldman–Turaev Lie bialgebra in genus zero and the Kashiwara–Vergne problem (preprint) | arXiv

[3] Alekseev, A.; Malkin, A. The hyperbolic moduli space of flat connections and the isomorphism of symplectic multiplicity spaces, Duke Math. J., Volume 93 (1998) no. 3, pp. 575-595

[4] Bocklandt, R.; Le Bruyn, L. Necklace lie algebras and noncommutative symplectic geometry, Math. Z., Volume 240 (2002) no. 1, pp. 141-167

[5] Drinfeld, V. On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q), Algebra Anal., Volume 2 (1990) no. 4, pp. 149-181

[6] Fock, V.V.; Rosly, A.A. Flat connections and polyubles, Theor. Math. Phys., Volume 95 (1993) no. 2, pp. 526-534

[7] Ginzburg, V. Non-commutative symplectic geometry, quiver varieties, and operads, Math. Res. Lett., Volume 8 (2001) no. 3, pp. 377-400

[8] Goldman, W. Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., Volume 85 (1986), pp. 263-302

[9] Hitchin, N., Springer, Netherlands (1997), pp. 69-112

[10] Kawazumi, N. Harmonic Magnus expansion on the universal family of Riemann surfaces (preprint) | arXiv

[11] Kawazumi, N. A regular homotopy version of the Goldman–Turaev Lie bialgebra, the Enomoto–Satoh traces and the divergence cocycle in the Kashiwara–Vergne problem, RIMS Kôkyûroku Bessatsu, Volume 1936 (2015), pp. 137-141 | arXiv

[12] Kontsevich, M. Formal (non)commutative symplectic geometry, 1990–1992, Birkhäuser Boston, Boston, MA, USA (1993), pp. 173-187

[13] Massuyeau, G. Formal descriptions of Turaev's loop operations, Quantum Topol. (2017) (in press, also available at) | arXiv

[14] Schedler, T. A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver, Int. Math. Res. Not., Volume 2005 (2005) no. 12, pp. 725-760

[15] Turaev, V.G. Intersections of loops in two-dimensional manifolds, Mat. Sb., Volume 106 (1978) no. 148, pp. 566-588 (English translation: Math. USSR Sb., 35, 1979, pp. 229-250)

[16] van den Bergh, M. Double Poisson algebras, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 5711-5799

Cité par Sources :