Mathematical analysis/Functional analysis
On the representation by sums of algebras of continuous functions
[Sur la représentation des algèbres de fonctions continues comme sommes de sous-algèbres]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 9, pp. 949-955.

Nous donnons une condition nécessaire pour la représentation d'un espace de fonctions continues comme la somme d'un nombre fini k de ses sous-algèbres fermées. Une condition suffisante pour ce problème a été obtenue par Sternfeld en 1978. Dans le cas de deux sous-algèbres (k=2), notre condition nécessaire se trouve être également suffisante. Dans le cas d'une seule sous-algèbre (k=1), notre résultat coïncide avec une version du théorème de Stone–Weierstrass classique.

We give a necessary condition for the representation of the space of continuous functions by sums of its k closed subalgebras. A sufficient condition for this representation problem was first obtained by Sternfeld in 1978. In case of two subalgebras (k=2), our necessary condition turns out to be also sufficient. If k=1, our result coincides with a version of the classical Stone–Weierstrass theorem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.09.015
Asgarova, Aida Kh. 1 ; Ismailov, Vugar E. 1

1 Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, Az-1141, Baku, Azerbaijan
@article{CRMATH_2017__355_9_949_0,
     author = {Asgarova, Aida Kh. and Ismailov, Vugar E.},
     title = {On the representation by sums of algebras of continuous functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {949--955},
     publisher = {Elsevier},
     volume = {355},
     number = {9},
     year = {2017},
     doi = {10.1016/j.crma.2017.09.015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.09.015/}
}
TY  - JOUR
AU  - Asgarova, Aida Kh.
AU  - Ismailov, Vugar E.
TI  - On the representation by sums of algebras of continuous functions
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 949
EP  - 955
VL  - 355
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.09.015/
DO  - 10.1016/j.crma.2017.09.015
LA  - en
ID  - CRMATH_2017__355_9_949_0
ER  - 
%0 Journal Article
%A Asgarova, Aida Kh.
%A Ismailov, Vugar E.
%T On the representation by sums of algebras of continuous functions
%J Comptes Rendus. Mathématique
%D 2017
%P 949-955
%V 355
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.09.015/
%R 10.1016/j.crma.2017.09.015
%G en
%F CRMATH_2017__355_9_949_0
Asgarova, Aida Kh.; Ismailov, Vugar E. On the representation by sums of algebras of continuous functions. Comptes Rendus. Mathématique, Tome 355 (2017) no. 9, pp. 949-955. doi : 10.1016/j.crma.2017.09.015. http://www.numdam.org/articles/10.1016/j.crma.2017.09.015/

[1] Arnold, V.I. On functions of three variables, Dokl. Akad. Nauk SSSR, Volume 114 (1957), pp. 679-681 (in Russian); English transl. in Transl. Amer. Math. Soc., 28, 1963, pp. 51-54

[2] Braess, D.; Pinkus, A. Interpolation by ridge functions, J. Approx. Theory, Volume 73 (1993), pp. 218-236

[3] Cowsik, R.C.; Klopotowski, A.; Nadkarni, M.G. When is f(x,y)=u(x)+v(y)?, Proc. Indian Acad. Sci. Math. Sci., Volume 109 (1999), pp. 57-64

[4] Diliberto, S.P.; Straus, E.G. On the approximation of a function of several variables by the sum of functions of fewer variables, Pac. J. Math., Volume 1 (1951), pp. 195-210

[5] Dyn, N.; Light, W.A.; Cheney, E.W. Interpolation by piecewise-linear radial basis functions, J. Approx. Theory, Volume 59 (1989), pp. 202-223

[6] Garkavi, A.L.; Medvedev, V.A.; Khavinson, S.Ya. On the existence of a best uniform approximation of functions of two variables by sums of the type φ(x)+ψ(y), Sib. Mat. Zh., Volume 36 (1995), pp. 819-827 (in Russian); English transl. in Sib. Math. J., 36, 1995, pp. 707-713

[7] Ismailov, V.E. Methods for computing the least deviation from the sums of functions of one variable, Sib. Mat. Zh., Volume 47 (2006) no. 5, pp. 1076-1082 (in Russian); translation in Sib. Math. J., 47, 5, 2006, pp. 883-888

[8] Ismailov, V.E. On the approximation by compositions of fixed multivariate functions with univariate functions, Stud. Math., Volume 183 (2007), pp. 117-126

[9] Ismailov, V.E. Representation of multivariate functions by sums of ridge functions, J. Math. Anal. Appl., Volume 331 (2007) no. 1, pp. 184-190

[10] Ismailov, V.E. Characterization of an extremal sum of ridge functions, J. Comput. Appl. Math., Volume 205 (2007) no. 1, pp. 105-115

[11] Ismailov, V.E. On the representation by linear superpositions, J. Approx. Theory, Volume 151 (2008), pp. 113-125

[12] Ismailov, V.E. A note on the representation of continuous functions by linear superpositions, Expo. Math., Volume 30 (2012), pp. 96-101

[13] Khavinson, S.Ya. A Chebyshev theorem for the approximation of a function of two variables by sums of the type φ(x)+ψ(y), Izv. Acad. Nauk. SSSR, Ser. Mat., Volume 33 (1969), pp. 650-666 (English transl. in Math. USSR, Izv., 3, 1969, pp. 617-632)

[14] Khavinson, S.Ya. Best Approximation by Linear Superpositions (Approximate Nomography), Translations of Mathematical Monographs, vol. 159, American Mathematical Society, Providence, RI, USA, 1997 (Translated from the Russian manuscript by D. Khavinson, 175 pp)

[15] Klopotowski, A.; Nadkarni, M.G. Shift invariant measures and simple spectrum, Colloq. Math., Volume 84/85 (2000) (part 2, 385–394)

[16] Klopotowski, A.; Nadkarni, M.G.; Bhaskara Rao, K.P.S. When is f(x1,x2,...,xn)=u1(x1)+u2(x2)++un(xn)?, Proc. Indian Acad. Sci. Math. Sci., Volume 113 (2003), pp. 77-86

[17] Klopotowski, A.; Nadkarni, M.G.; Bhaskara Rao, K.P.S. Geometry of good sets in n-fold Cartesian product, Proc. Indian Acad. Sci. Math. Sci., Volume 114 (2004) no. 2, pp. 181-197

[18] Light, W.A.; Cheney, E.W. On the approximation of a bivariate function by the sum of univariate functions, J. Approx. Theory, Volume 29 (1980), pp. 305-323

[19] Light, W.A.; Cheney, E.W. Approximation Theory in Tensor Product Spaces, Lect. Notes Math., vol. 1169, Springer-Verlag, Berlin, 1985 (157 pp)

[20] Marshall, D.E.; O'Farrell, A.G. Uniform approximation by real functions, Fundam. Math., Volume 104 (1979), pp. 203-211

[21] Marshall, D.E.; O'Farrell, A.G. Approximation by a sum of two algebras. The lightning bolt principle, J. Funct. Anal., Volume 52 (1983), pp. 353-368

[22] Medvedev, V.A. On the sum of two closed algebras of continuous functions on a compact space, Funkc. Anal. Prilozh., Volume 27 (1993) no. 1, pp. 33-36 (in Russian); translation in Funct. Anal. Appl., 27, 1, 1993, pp. 28-30

[23] Nadkarni, M.G. Kolmogorov's superposition theorem and sums of algebras, J. Anal., Volume 12 (2004), pp. 21-67

[24] Navada, K.G. Some remarks on good sets, Proc. Indian Acad. Sci. Math. Sci., Volume 114 (2004) no. 4, pp. 389-397

[25] Navada, K.G. Some further remarks on good sets, Proc. Indian Acad. Sci. Math. Sci., Volume 117 (2007) no. 2, pp. 197-203

[26] Rudin, W. Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991 (424 pp)

[27] Sproston, J.P.; Strauss, D. Sums of subalgebras of C(X), J. Lond. Math. Soc., Volume 45 (1992), pp. 265-278

[28] Sternfeld, Y. Uniformly separating families of functions, Isr. J. Math., Volume 29 (1978), pp. 61-91

[29] Sternfeld, Y. Uniform separation of points and measures and representation by sums of algebras, Isr. J. Math., Volume 55 (1986), pp. 350-362

[30] Stone, M.H. Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., Volume 41 (1937), pp. 375-481

[31] Stone, M.H. The generalized Weierstrass approximation theorem, Math. Mag., Volume 21 (1948), pp. 167-184 (237–254)

Cité par Sources :