Partial differential equations/Numerical analysis
Variational projector augmented-wave method
[La méthode VPAW]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 6, pp. 665-670.

Dans les calculs de structure électronique de type Kohn–Sham, les fonctions d'ondes présentent des singularités aux positions des noyaux. Ces singularités empêchent une bonne approximation de la fonction par des ondes planes. La méthode PAW (projector augmented-wave) vise à contourner cette difficulté en remplaçant le problème aux valeurs propres d'origine par un autre ayant les mêmes valeurs propres, mais des vecteurs propres plus réguliers. Nous proposons et analysons une implémentation différente de cette méthode, baptisée VPAW (variational PAW). Elle permet d'obtenir une meilleure convergence en nombre d'ondes planes. Quelques résultats numériques sur un cas idéalisé confirment son efficacité.

In Kohn–Sham electronic structure computations, wave functions have singularities at nuclear positions. Because of these singularities, plane wave expansions give a poor approximation of the eigenfunctions. The PAW (projector augmented-wave) method circumvents this issue by replacing the original eigenvalue problem by a new one with the same eigenvalues, but smoother eigenvectors. Here a slightly different method, called VPAW (variational PAW), is proposed and analyzed. This new method allows for a better convergence with respect to the number of plane waves. Some numerical results on an idealized case corroborate this efficiency.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.05.004
Blanc, Xavier 1 ; Cancès, Éric 2 ; Dupuy, Mi-Song 1

1 Université Paris-Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis-Lions, UMR 7598, UPMC, CNRS, 75205 Paris, France
2 CERMICS, École des ponts and Inria Paris, 6 & 8, avenue Blaise-Pascal, 77455 Marne-la-Vallée, France
@article{CRMATH_2017__355_6_665_0,
     author = {Blanc, Xavier and Canc\`es, \'Eric and Dupuy, Mi-Song},
     title = {Variational projector augmented-wave method},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {665--670},
     publisher = {Elsevier},
     volume = {355},
     number = {6},
     year = {2017},
     doi = {10.1016/j.crma.2017.05.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.05.004/}
}
TY  - JOUR
AU  - Blanc, Xavier
AU  - Cancès, Éric
AU  - Dupuy, Mi-Song
TI  - Variational projector augmented-wave method
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 665
EP  - 670
VL  - 355
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.05.004/
DO  - 10.1016/j.crma.2017.05.004
LA  - en
ID  - CRMATH_2017__355_6_665_0
ER  - 
%0 Journal Article
%A Blanc, Xavier
%A Cancès, Éric
%A Dupuy, Mi-Song
%T Variational projector augmented-wave method
%J Comptes Rendus. Mathématique
%D 2017
%P 665-670
%V 355
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.05.004/
%R 10.1016/j.crma.2017.05.004
%G en
%F CRMATH_2017__355_6_665_0
Blanc, Xavier; Cancès, Éric; Dupuy, Mi-Song. Variational projector augmented-wave method. Comptes Rendus. Mathématique, Tome 355 (2017) no. 6, pp. 665-670. doi : 10.1016/j.crma.2017.05.004. http://www.numdam.org/articles/10.1016/j.crma.2017.05.004/

[1] Audouze, C.; Jollet, F.; Torrent, M.; Gonze, X. Projector augmented-wave approach to density-functional perturbation theory, Phys. Rev. B, Volume 73 (2006) no. 23

[2] X. Blanc, E. Cancès, M.-S. Dupuy, in preparation.

[3] Blochl, P.E. Projector augmented-wave method, Phys. Rev. B, Volume 50 (1994) no. 24, pp. 17953-17979

[4] Fournais, S.; Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T.; Sørensen, T.Ø. Sharp regularity results for coulombic many-electron wave functions, Commun. Math. Phys., Volume 255 (2005), pp. 183-227

[5] Hunsicker, E.; Nistor, V.; Sofo, J.O. Analysis of periodic Schrödinger operators: regularity and approximation of eigenfunctions, J. Math. Phys., Volume 49 (2008) no. 8

[6] Jollet, F.; Torrent, M.; Holzwarth, N. Generation of projector augmented-wave atomic data: a 71 element validated table in the XML format, Comput. Phys. Commun., Volume 185 (2014) no. 4, pp. 1246-1254

[7] Kato, T. On the eigenfunctions of many-particle systems in quantum mechanics, Commun. Pure Appl. Math., Volume 10 (1957) no. 2, pp. 151-177

[8] Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, Volume 59 (1999) no. 3, pp. 1758-1775

[9] Levitt, A.; Torrent, M. Parallel eigensolvers in plane-wave density functional theory, Comput. Phys. Commun., Volume 187 (2015), pp. 98-105

[10] Rostgaard, C. The projector augmented-wave method, 2009 (arXiv preprint) | arXiv

[11] Torrent, M.; Jollet, F.; Bottin, F.; Zérah, G.; Gonze, X. Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure, Comput. Mater. Sci., Volume 42 (2008) no. 2, pp. 337-351

Cité par Sources :