Numerical analysis
Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces
[Schémas d'ordre deux en temps pour des flots de gradient dans des espaces métriques géodésiques et de Wasserstein]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 3, pp. 345-353.

La discrétisation temporelle des flots de gradient dans des espaces métriques utilise des variantes du schéma d'Euler implicite issu du travail séminal de Jordan, Kinderlehrer et Otto [9]. Nous proposons dans cette Note une approche différente, permettant de construire deux schémas numériques d'ordre deux en temps. Dans le cadre d'un espace métrique, nous montrons que les schémas sont bien définis et prouvons la convergence de l'un d'entre eux sous des hypothèses de régularité. Pour le cas particulier d'un flot de gradient Fokker–Planck dans l'espace de Wasserstein, nous obtenons (théoriquement et numériquement) la convergence à l'ordre deux.

The time discretization of gradient flows in metric spaces uses variants of the celebrated implicit Euler-type scheme of Jordan, Kinderlehrer, and Otto [9]. We propose in this Note a different approach, which allows us to construct two second-order in time numerical schemes. In a metric space framework, we show that the schemes are well defined and prove the convergence for one of them under some regularity assumptions. For the particular case of a Fokker–Planck gradient flow in the Wasserstein space, we obtain (theoretically and numerically) the second-order convergence.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.02.001
Legendre, Guillaume 1 ; Turinici, Gabriel 1, 2

1 Université Paris-Dauphine, PSL Research University, CNRS, UMR 7534, CEREMADE, 75016 Paris, France
2 Institut universitaire de France, France
@article{CRMATH_2017__355_3_345_0,
     author = {Legendre, Guillaume and Turinici, Gabriel},
     title = {Second-order in time schemes for gradient flows in {Wasserstein} and geodesic metric spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {345--353},
     publisher = {Elsevier},
     volume = {355},
     number = {3},
     year = {2017},
     doi = {10.1016/j.crma.2017.02.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.02.001/}
}
TY  - JOUR
AU  - Legendre, Guillaume
AU  - Turinici, Gabriel
TI  - Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 345
EP  - 353
VL  - 355
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.02.001/
DO  - 10.1016/j.crma.2017.02.001
LA  - en
ID  - CRMATH_2017__355_3_345_0
ER  - 
%0 Journal Article
%A Legendre, Guillaume
%A Turinici, Gabriel
%T Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces
%J Comptes Rendus. Mathématique
%D 2017
%P 345-353
%V 355
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.02.001/
%R 10.1016/j.crma.2017.02.001
%G en
%F CRMATH_2017__355_3_345_0
Legendre, Guillaume; Turinici, Gabriel. Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces. Comptes Rendus. Mathématique, Tome 355 (2017) no. 3, pp. 345-353. doi : 10.1016/j.crma.2017.02.001. http://www.numdam.org/articles/10.1016/j.crma.2017.02.001/

[1] Agueh, M.; Carlier, G. Barycenters in the Wasserstein space, SIAM J. Math. Anal., Volume 43 (2011) no. 2, pp. 904-924

[2] Ambrosio, L.; Gigli, N. A user's guide to optimal transport, Cetraro, Italy, 2009 (Piccoli, B.; Rascle, M., eds.) (Lecture Notes in Mathematics), Springer (2008), pp. 1-155

[3] Ambrosio, L.; Gigli, N.; Savaré, G. Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics, ETH Zürich Birkhäuser, Basel, 2008

[4] Benamou, J.-D.; Carlier, G.; Mérigot, Q.; Oudet, É. Discretization of functionals involving the Monge–Ampère operator, Numer. Math., Volume 134 (2016) no. 3, pp. 611-636

[5] Blanchet, A.; Calvez, V.; Carrillo, J.A. Convergence of the mass-transport steepest descent scheme for the subcritical Patlak–Keller–Segel model, SIAM J. Numer. Anal., Volume 46 (2008) no. 2, pp. 691-721

[6] Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 375-417

[7] Burago, D.; Burago, Y.; Ivanov, S. A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, 2001

[8] Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in Computational Mathematics, vol. 8, Springer, 1993

[9] Jordan, R.; Kinderlehrer, D.; Otto, F. The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., Volume 29 (1998) no. 1, pp. 1-17

[10] Kinderlehrer, D.; Walkington, N.J. Approximation of parabolic equations using the Wasserstein metric, ESAIM Math. Model. Numer. Anal., Volume 33 (1999) no. 4, pp. 837-852

[11] Mirebeau, J.-M. Discretization of the 3D Monge–Ampere operator, between wide stencils and power diagrams, ESAIM Math. Model. Numer. Anal., Volume 49 (2015) no. 5, pp. 1511-1523

[12] Press, W.H.; Teukolsky, S.A.; Veterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 2007

[13] Santambrogio, F. Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling, Progress in Nonlinear Differential Equations and Their Applications, vol. 87, Birkhäuser, 2015

[14] Villani, C. Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften, vol. 338, Springer, 2009

Cité par Sources :