Calculus of variations
Pathological solutions to the Euler–Lagrange equation and existence/regularity of minimizers in one-dimensional variational problems
[Solutions pathologiques à l'équation d'Euler–Lagrange et existence/régularité des minimiseurs des problèmes variationnels en dimension un]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 3, pp. 359-362.

Dans cette Note, nous démontrons que si L(x,u,v)C3(R3R), Lvv>0 et Lα|v|+β, α>0, alors tous les problèmes (1)(2) admettent des solutions dans la classe W1,1[a,b], qui sont en fait C3-régulières pourvu que l'équation d'Euler (5) n'ait pas de solution pathologique. Ici, une solution uC3[c,d[ de (5) est dite pathologique si l'équation est satisfaite dans [c,d[, |u˙(x)| lorsque xd et uC[c,d]<. Nous montrons également (voir Théorème 9), que l'absence de solution pathologique à l'équation d'Euler entraîne l'absence de phénomène de Lavrentiev ; aucune hypothèse de croissance minimale n'est requise pour ce résultat.

In this paper, we prove that if L(x,u,v)C3(R3R), Lvv>0 and Lα|v|+β, α>0, then all problems (1), (2) admit solutions in the class W1,1[a,b], which are in fact C3-regular provided there are no pathological solutions to the Euler equation (5). Here uC3[c,d[ is called a pathological solution to equation (5) if the equation holds in [c,d[, |u˙(x)| as xd, and uC[c,d]<. We also prove that the lack of pathological solutions to the Euler equation results in the lack of the Lavrentiev phenomenon, see Theorem 9; no growth assumptions from below are required in this result.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.01.020
Gratwick, Richard 1 ; Sedipkov, Aidys 2, 3 ; Sychev, Mikhail 2, 3 ; Tersenov, Aris 2, 3

1 Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
2 Laboratory of Differential Equations and Related Problems of Analysis, Sobolev Institute of Mathematics, Koptuyg Avenue, 4, Novosibirsk 630090, Russia
3 Novosibirsk State University, Russia
@article{CRMATH_2017__355_3_359_0,
     author = {Gratwick, Richard and Sedipkov, Aidys and Sychev, Mikhail and Tersenov, Aris},
     title = {Pathological solutions to the {Euler{\textendash}Lagrange} equation and existence/regularity of minimizers in one-dimensional variational problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {359--362},
     publisher = {Elsevier},
     volume = {355},
     number = {3},
     year = {2017},
     doi = {10.1016/j.crma.2017.01.020},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.01.020/}
}
TY  - JOUR
AU  - Gratwick, Richard
AU  - Sedipkov, Aidys
AU  - Sychev, Mikhail
AU  - Tersenov, Aris
TI  - Pathological solutions to the Euler–Lagrange equation and existence/regularity of minimizers in one-dimensional variational problems
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 359
EP  - 362
VL  - 355
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.01.020/
DO  - 10.1016/j.crma.2017.01.020
LA  - en
ID  - CRMATH_2017__355_3_359_0
ER  - 
%0 Journal Article
%A Gratwick, Richard
%A Sedipkov, Aidys
%A Sychev, Mikhail
%A Tersenov, Aris
%T Pathological solutions to the Euler–Lagrange equation and existence/regularity of minimizers in one-dimensional variational problems
%J Comptes Rendus. Mathématique
%D 2017
%P 359-362
%V 355
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.01.020/
%R 10.1016/j.crma.2017.01.020
%G en
%F CRMATH_2017__355_3_359_0
Gratwick, Richard; Sedipkov, Aidys; Sychev, Mikhail; Tersenov, Aris. Pathological solutions to the Euler–Lagrange equation and existence/regularity of minimizers in one-dimensional variational problems. Comptes Rendus. Mathématique, Tome 355 (2017) no. 3, pp. 359-362. doi : 10.1016/j.crma.2017.01.020. http://www.numdam.org/articles/10.1016/j.crma.2017.01.020/

[1] Ball, J.M.; Mizel, V.J. One-dimensional variational problems whose minimizers do not satisfy the Euler–Lagrange equation, Arch. Ration. Mech. Anal., Volume 90 (1985) no. 4, pp. 325-388

[2] Buttazzo, G.; Giaquinta, M.; Hildebrandt, S. One-Dimensional Variational Problems. An Introduction, Oxford University Press, UK, 1998

[3] Clarke, F.H.; Vinter, R.B. Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc., Volume 289 (1984) no. 1, pp. 73-98

[4] Clarke, F.H.; Vinter, R.B. On the conditions under which the Euler equation or the maximum principle hold, Appl. Math. Optim., Volume 12 (1984), pp. 73-79

[5] Davie, A.M. Singular minimizers in the calculus of variations, Arch. Ration. Mech. Anal., Volume 101 (1988), pp. 161-177

[6] Gratwick, R. Singular sets and the Lavrentiev phenomenon, Proc. R. Soc. Edinb., Sect. A, Volume 145 (2015) no. 3, pp. 513-533

[7] Gratwick, R.; Sychev, M.A.; Tersenov, A.S. Regularity and singularity phenomena for one-dimensional variational problems with singular ellipticity, Pure Appl. Funct. Anal., Volume 1 (2016) no. 3, pp. 397-416

[8] Mizel, V.J.; Sychev, M.A. A condition on the value function both necessary and sufficient for full regularity of minimizers of one-dimensional variational problems, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 119-133

[9] Sychev, M.A. On a classical problem of the calculus of variations, Sov. Math. Dokl., Volume 44 (1992), pp. 116-120

[10] Sychev, M.A. On the question of regularity of the solutions of variational problems, Russian Acad. Sci. Sb. Math., Volume 75 (1993), pp. 535-556

[11] Sychev, M.A. Examples of classically unsolvable regular scalar variational problems satisfying standard growth conditions, Sib. Math. J., Volume 37 (1996), pp. 1212-1227

[12] Sychev, M.A. Another theorem of classical solvability ‘in small’ for one-dimensional variational problems, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 269-294

[13] Sychev, M.A.; Sycheva, N.N. On Legendre and Weierstrass conditions in one-dimensional variational problems, J. Convex Anal. (2017) (in press)

[14] Tonelli, L. Sur une méthode direte du calcul des variations, Rend. Circ. Mat. Palermo, Volume 39 (1915), pp. 233-264

[15] Tonelli, L. Fondamenti di calcolo delle Variazioni, vol. II, Zanichelli, Bologna, Italy, 1921

Cité par Sources :

This research was partially supported by the European Research Council/ERC Grant Agreement No. 291497 and by the grants RFBR N 15-01-08275 and 0314-2015-0012 from the Presidium of RAS.