Partial differential equations
Decay of solutions to a new Hall–MHD system in R3
[Décroissance des solutions d'un nouveau système d'équations magnétohydrodynamiques de Hall dans R3]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 3, pp. 310-317.

Cette Note traite du comportement à long terme des solutions d'un nouveau système d'équations magnétohydrodynamiques de Hall dans R3. Utilisant la méthode de décomposition de Fourier, nous donnons une borne supérieure du taux de décroissance en temps dans L2(R3) pour les solutions faibles.

This paper discusses the large-time behavior of solutions for a new Hall–MHD system in R3. Using the Fourier splitting method, we establish the upper bound of the time-decay rate in L2(R3) for weak solutions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.01.019
Zhao, Xiaopeng 1, 2

1 Department of Mathematics, Southeast University, Nanjing 210018, China
2 School of Science, Jiangnan University, Wuxi 214122, China
@article{CRMATH_2017__355_3_310_0,
     author = {Zhao, Xiaopeng},
     title = {Decay of solutions to a new {Hall{\textendash}MHD} system in $ {\mathbb{R}}^{3}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {310--317},
     publisher = {Elsevier},
     volume = {355},
     number = {3},
     year = {2017},
     doi = {10.1016/j.crma.2017.01.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.01.019/}
}
TY  - JOUR
AU  - Zhao, Xiaopeng
TI  - Decay of solutions to a new Hall–MHD system in $ {\mathbb{R}}^{3}$
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 310
EP  - 317
VL  - 355
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.01.019/
DO  - 10.1016/j.crma.2017.01.019
LA  - en
ID  - CRMATH_2017__355_3_310_0
ER  - 
%0 Journal Article
%A Zhao, Xiaopeng
%T Decay of solutions to a new Hall–MHD system in $ {\mathbb{R}}^{3}$
%J Comptes Rendus. Mathématique
%D 2017
%P 310-317
%V 355
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.01.019/
%R 10.1016/j.crma.2017.01.019
%G en
%F CRMATH_2017__355_3_310_0
Zhao, Xiaopeng. Decay of solutions to a new Hall–MHD system in $ {\mathbb{R}}^{3}$. Comptes Rendus. Mathématique, Tome 355 (2017) no. 3, pp. 310-317. doi : 10.1016/j.crma.2017.01.019. http://www.numdam.org/articles/10.1016/j.crma.2017.01.019/

[1] Bjorland, C.; Schonbek, M.E. Poincaré's inequality and diffusive evolution equations, Adv. Difference Equ., Volume 14 (2009), pp. 241-260

[2] Brandolese, L. Characterization of solutions to dissipative systems with sharp algebraic decay, SIAM J. Math. Anal., Volume 48 (2016), pp. 1616-1633

[3] Chae, D.; Degond, P.; Liu, J. Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 31 (2014), pp. 555-565

[4] Chae, D.; Schonbek, M. On the temporal decay for the Hall–magnetohydrodynamic equations, J. Differential Equations, Volume 255 (2013), pp. 3971-3982

[5] Corti, P. Stable numerical scheme for the magnetic induction equation with Hall effect (Li, T.; Jiang, S., eds.), Hyperbolic Problems: Theory, Numerics and Applications, vol. 2, Higher Education Press, 2012, pp. 374-381

[6] Deng, X.H.; Matsumoto, H. Rapid magnetic reconnection in the Earth's magnetosphere mediated by whistler waves, Nature, Volume 410 (2001), pp. 557-560

[7] Fan, J.; Ahmad, B.; Hayat, T.; Zhou, Y. On blow-up criteria for a new Hall–MHD system, Appl. Math. Comput., Volume 274 (2016), pp. 20-24

[8] Fan, J.; Fukumoto, Y.; Nakamura, G.; Zhou, Y. Regularity criteria for the incompressible Hall–MHD system, ZAMM Z. Angew. Math. Mech., Volume 95 (2015), pp. 1156-1160

[9] Jiang, Z. Asymptotic behavior of strong solutions to the 3D Navier–Stokes equations with a nonlinear damping term, Nonlinear Anal., Volume 75 (2012) no. 13, pp. 5002-5009

[10] Jiang, Z.; Fan, J. Time decay rate for two 3D magnetohydrodynamics-α models, Math. Methods Appl. Sci., Volume 37 (2014) no. 6, pp. 838-845

[11] Ma, Z.W.; Bhattacharjee, A. Hall magnetohydrodynamic reconnection: the geospace environment modeling challenge, J. Geophys. Res., Volume 106 (2001) no. A3, pp. 3773-3782

[12] Niche, C.J.; Schonbek, M.E. Decay characterization of solutions to dissipative equations, J. London Math. Soc., Volume 91 (2015) no. 2, pp. 573-595

[13] Niche, C.J. Decay characterization of solutions to Navier–Stokes–Voigt equations in terms of the initial datum, J. Differential Equations, Volume 260 (2016), pp. 4440-4453

[14] Schonbek, M.E. L2 decay for weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 88 (1985) no. 2, pp. 209-222

[15] Schonbek, M.E. Large time behaviour of solutions to the Navier–Stokes equations, Comm. Partial Differential Equations, Volume 11 (1986) no. 7, pp. 733-763

[16] Temam, R. Navier–Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977

[17] Wan, R.; Zhou, Y. On global existence, energy decay and blow-up criteria for the Hall–MHD system, J. Differential Equations, Volume 259 (2015), pp. 5982-6008

[18] Weng, S. On analyticity and temporal decay rates of solutions to the viscous resistive Hall–MHD system, J. Differential Equations, Volume 260 (2016), pp. 6504-6524

[19] Weng, S. Space-time decay estimates for the incompressible viscous resistive MHD and Hall–MHD equations, J. Funct. Anal., Volume 270 (2016), pp. 2168-2187

[20] Zhou, Y. A remark on the decay of solutions to the 3-D Navier–Stokes equations, Math. Methods Appl. Sci., Volume 30 (2007) no. 10, pp. 1223-1229

[21] Zhou, Y. Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, Volume 21 (2008) no. 9, pp. 2061-2071

Cité par Sources :