Partial differential equations
Boundedness in a three-dimensional chemotaxis–haptotaxis model with nonlinear diffusion
[Existence de solution bornée pour les modèles tri-dimensionnels de chimio-haptotaxie avec diffusion non-linéaire]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 2, pp. 181-186.

Nous considérons le système quasi-linéaire de chimio-haptotaxie

{ut=(D(u)u)χ(uv)ξ(uw)ut=+μu(1uw),xΩ,t>0,vt=Δvv+u,xΩ,t>0,wt=vw,xΩ,t>0,
sous des conditions aux limites de Neumann homogènes, dans un domaine borné et lisse ΩR3. Ici χ>0, ξ>0, μ>0, D(u)cDum1 pour tout u>0 et un cD>0, et D(u)>0 pour tout u0. Lorsque le quotient χ/μ est assez petit, nous montrons que le système possède une unique solution globale classique, qui est uniformément bornée. Notre résultat est sans restriction sur m.

The quasilinear chemotaxis–haptotaxis system

{ut=(D(u)u)χ(uv)ξ(uw)ut=+μu(1uw),xΩ,t>0,vt=Δvv+u,xΩ,t>0,wt=vw,xΩ,t>0,
is considered under homogeneous Neumann boundary conditions in a bounded and smooth domain ΩR3. Here χ>0, ξ>0 and μ>0, D(u)cDum1 for all u>0 with some cD>0 and D(u)>0 for all u0. It is shown that if the ratio χμ is sufficiently small, then the system possesses a unique global classical solution that is uniformly bounded. Our result is independent of m.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.12.005
Hu, Xuegang 1 ; Wang, Liangchen 1 ; Mu, Chunlai 2 ; Li, Ling 1

1 Department of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
2 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, PR China
@article{CRMATH_2017__355_2_181_0,
     author = {Hu, Xuegang and Wang, Liangchen and Mu, Chunlai and Li, Ling},
     title = {Boundedness in a three-dimensional chemotaxis{\textendash}haptotaxis model with nonlinear diffusion},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {181--186},
     publisher = {Elsevier},
     volume = {355},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crma.2016.12.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2016.12.005/}
}
TY  - JOUR
AU  - Hu, Xuegang
AU  - Wang, Liangchen
AU  - Mu, Chunlai
AU  - Li, Ling
TI  - Boundedness in a three-dimensional chemotaxis–haptotaxis model with nonlinear diffusion
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 181
EP  - 186
VL  - 355
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2016.12.005/
DO  - 10.1016/j.crma.2016.12.005
LA  - en
ID  - CRMATH_2017__355_2_181_0
ER  - 
%0 Journal Article
%A Hu, Xuegang
%A Wang, Liangchen
%A Mu, Chunlai
%A Li, Ling
%T Boundedness in a three-dimensional chemotaxis–haptotaxis model with nonlinear diffusion
%J Comptes Rendus. Mathématique
%D 2017
%P 181-186
%V 355
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2016.12.005/
%R 10.1016/j.crma.2016.12.005
%G en
%F CRMATH_2017__355_2_181_0
Hu, Xuegang; Wang, Liangchen; Mu, Chunlai; Li, Ling. Boundedness in a three-dimensional chemotaxis–haptotaxis model with nonlinear diffusion. Comptes Rendus. Mathématique, Tome 355 (2017) no. 2, pp. 181-186. doi : 10.1016/j.crma.2016.12.005. http://www.numdam.org/articles/10.1016/j.crma.2016.12.005/

[1] Cao, X. Boundedness in a three-dimensional chemotaxis–haptotaxis model, Z. Angew. Math. Phys. (2016) | DOI

[2] Chaplain, M.A.J.; Lolas, G. Mathematical modelling of cancer invasion of tissue: the role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 1685-1734

[3] Chaplain, M.A.J.; Lolas, G. Mathematical modelling of tissue invasion: dynamic heterogeneity, Netw. Heterog. Media, Volume 1 (2006), pp. 399-439

[4] Cie'slak, T.; Stinner, C. Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions, J. Differ. Equ., Volume 252 (2012), pp. 5832-5851

[5] Hieber, M.; Prüss, J. Heat kernels and maximal lplq estimate for parabolic evolution equations, Commun. Partial Differ. Equ., Volume 22 (1997), pp. 1647-1669

[6] Ishida, S.; Seki, K.; Yokota, T. Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains, J. Differ. Equ., Volume 256 (2014), pp. 2993-3010

[7] Kowalczyk, R.; Szymańska, Z. On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., Volume 343 (2008), pp. 379-398

[8] Li, Y.; Lankeit, J. Boundedness in a chemotaxis–haptotaxis model with nonlinear diffusion, Nonlinearity, Volume 29 (2016), pp. 1564-1595

[9] Mimura, M.; Tsujikawa, T. Aggregating pattern dynamics in a chemotaxis model including growth, Physica A, Volume 230 (1996), pp. 499-543

[10] Mu, C.; Wang, L.; Zheng, P.; Zhang, Q. Global existence and boundedness of classical solutions to a parabolic–parabolic chemotaxis system, Nonlinear Anal., Real World Appl., Volume 14 (2013), pp. 1634-1642

[11] Osaki, K.; Tsujikawa, T.; Yagi, A.; Mimura, M. Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., Volume 51 (2002), pp. 119-144

[12] Tao, Y. Global existence of classical solutions to a combined chemotaxis–haptotaxis model with logistic source, J. Math. Anal. Appl., Volume 354 (2009), pp. 60-69

[13] Tao, Y. Boundedness in a two-dimensional chemotaxis–haptotaxis system, 2014 | arXiv

[14] Tao, Y.; Wang, M. Global solution for a chemotactic–haptotactic model of cancer invasion, Nonlinearity, Volume 21 (2008), pp. 2221-2238

[15] Tao, Y.; Winkler, M. A chemotaxis–haptotaxis model: the roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., Volume 43 (2011), pp. 685-704

[16] Tao, Y.; Winkler, M. Boundedness and stabilization in a multi-dimensional chemotaxis–haptotaxis model, Proc. R. Soc. Edinb., Sect. A, Volume 144 (2014), pp. 1067-1084

[17] Tao, Y.; Winkler, M. Dominance of chemotaxis in a chemotaxis–haptotaxis model, Nonlinearity, Volume 27 (2014), pp. 1225-1239

[18] Tao, Y.; Winkler, M. Large time behavior in a multidimensional chemotaxis–haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., Volume 47 (2015), pp. 4229-4250

[19] Tello, J.I.; Winkler, M. A chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 849-877

[20] Wang, Y. Boundedness in the higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion, J. Differ. Equ., Volume 260 (2016), pp. 1975-1989

[21] Wang, Y. Boundedness in a multi-dimensional chemotaxis–haptotaxis model with nonlinear diffusion, Appl. Math. Lett., Volume 59 (2016), pp. 122-126

[22] Wang, Y.; Ke, Y. Large time behavior of solution to a fully parabolic chemotaxis–haptotaxis model in higher dimensions, J. Differ. Equ., Volume 260 (2016), pp. 6960-6988

[23] Wang, L.; Li, Y.; Mu, C. Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., Ser. A, Volume 34 (2014), pp. 789-802

[24] Wang, L.; Mu, C.; Zheng, P. On a quasilinear parabolic–elliptic chemotaxis system with logistic source, J. Differ. Equ., Volume 256 (2014), pp. 1847-1872

[25] Wang, Z.; Xiang, T. A class of chemotaxis systems with growth source and nonlinear secretion, 2015 | arXiv

[26] Winkler, M. Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1516-1537

[27] Winkler, M. Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., Volume 384 (2011), pp. 261-272

[28] Winkler, M. Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013), pp. 748-767

[29] Winkler, M. Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differ. Equ., Volume 257 (2014), pp. 1056-1077

[30] Xiang, T. Boundedness and global existence in the higher-dimensional parabolic–parabolic chemotaxis system with/without growth source, J. Differ. Equ., Volume 258 (2015), pp. 4275-4323

[31] Yang, C.; Cao, X.; Jiang, Z.; Zheng, S. Boundedness in a quasilinear fully parabolic Keller–Segel system of higher dimension with logistic source, J. Math. Anal. Appl., Volume 430 (2015), pp. 585-591

[32] Zhang, Q.; Li, Y. Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source, Z. Angew. Math. Phys., Volume 66 (2015), pp. 2473-2484

[33] Zheng, P.; Mu, C.; Song, X. On the boundedness and decay of solutions for a chemotaxis–haptotaxis system with nonlinear diffusion, Discrete Contin. Dyn. Syst., Ser. A, Volume 36 (2016), pp. 1737-1757

Cité par Sources :