Partial differential equations/Calculus of variations
Variational existence theory for hydroelastic solitary waves
Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1078-1086.

This paper presents an existence theory for solitary waves at the interface between a thin ice sheet (modelled using the Cosserat theory of hyperelastic shells) and an ideal fluid (of finite depth and in irrotational motion) for sufficiently large values of a dimensionless parameter γ. We establish the existence of a minimiser of the wave energy E subject to the constraint I=2μ, where I is the horizontal impulse and 0<μ1, and show that the solitary waves detected by our variational method converge (after an appropriate rescaling) to solutions to the nonlinear Schrödinger equation with cubic focussing nonlinearity as μ0.

Cette note présente une théorie d'existence d'ondes solitaires à l'interface entre une couche de glace mince (modélisée par la théorie des coques hyperélastiques de Cosserat) et un fluide parfait (de profondeur finie et irrotationnel), pour des valeurs suffisamment grandes d'un paramètre sans dimension γ. Nous montrons l'existence d'un minimiseur de l'énergie E de l'onde sous la contrainte I=2μ, où I représente l'impulsion horizontale et 0<μ1. Nous démontrons que les ondes solitaires trouvées par notre méthode variationnelle convergent (après un changement d'échelle approprié) vers des solutions de l'équation de Schrödinger cubique focalisante, lorsque μ0.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.10.004
Groves, Mark D. 1, 2; Hewer, Benedikt 1; Wahlén, Erik 3

1 Fachrichtung Mathematik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
2 Department of Mathematical Sciences, Loughborough University, Loughborough, Leics, LE11 3TU, UK
3 Centre for Mathematical Sciences, Lund University, PO Box 118, 22100 Lund, Sweden
@article{CRMATH_2016__354_11_1078_0,
     author = {Groves, Mark D. and Hewer, Benedikt and Wahl\'en, Erik},
     title = {Variational existence theory for hydroelastic solitary waves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1078--1086},
     publisher = {Elsevier},
     volume = {354},
     number = {11},
     year = {2016},
     doi = {10.1016/j.crma.2016.10.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2016.10.004/}
}
TY  - JOUR
AU  - Groves, Mark D.
AU  - Hewer, Benedikt
AU  - Wahlén, Erik
TI  - Variational existence theory for hydroelastic solitary waves
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 1078
EP  - 1086
VL  - 354
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2016.10.004/
DO  - 10.1016/j.crma.2016.10.004
LA  - en
ID  - CRMATH_2016__354_11_1078_0
ER  - 
%0 Journal Article
%A Groves, Mark D.
%A Hewer, Benedikt
%A Wahlén, Erik
%T Variational existence theory for hydroelastic solitary waves
%J Comptes Rendus. Mathématique
%D 2016
%P 1078-1086
%V 354
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2016.10.004/
%R 10.1016/j.crma.2016.10.004
%G en
%F CRMATH_2016__354_11_1078_0
Groves, Mark D.; Hewer, Benedikt; Wahlén, Erik. Variational existence theory for hydroelastic solitary waves. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1078-1086. doi : 10.1016/j.crma.2016.10.004. http://www.numdam.org/articles/10.1016/j.crma.2016.10.004/

[1] D.M. Ambrose, M. Siegel, Well-posedness of two-dimensional hydroelastic waves, preprint, 2014.

[2] Dias, F.; Kharif, C. Nonlinear gravity and capillary–gravity waves, Annu. Rev. Fluid Mech., Volume 31 (1999), pp. 301-346

[3] Groves, M.D.; Wahlén, E. Existence and conditional energetic stability of solitary gravity–capillary water waves with constant vorticity, Proc. R. Soc. Edinb., Sect. A, Volume 145 (2015), pp. 791-883

[4] Guyenne, P.; Parau, E. Computations of fully nonlinear hydroelastic solitary waves on deep water, J. Fluid Mech., Volume 713 (2012), pp. 307-329

[5] Hörmander, L. Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, Heidelberg, Germany, 1997

[6] Milewski, P.A.; Wang, Z. Three dimensional flexural-gravity waves, Stud. Appl. Math., Volume 131 (2013), pp. 135-148

[7] Plotnikov, P.; Toland, J.F. Modelling nonlinear hydroelastic waves, Philos. Trans. R. Soc. Lond. Ser. A, Volume 369 (2011), pp. 2942-2956

Cited by Sources: