Mathematical problems in mechanics
Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity
Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1139-1144.

Since the seminal contribution of Geymonat, Müller, and Triantafyllidis, it is known that strong ellipticity is not necessarily conserved by homogenization in linear elasticity. This phenomenon is typically related to microscopic buckling of the composite material. The present contribution concerns the interplay between isotropy and strong ellipticity in the framework of periodic homogenization in linear elasticity. Mixtures of two isotropic phases may indeed lead to loss of strong ellipticity when arranged in a laminate manner. We show that if a matrix/inclusion type mixture of isotropic phases produces macroscopic isotropy, then strong ellipticity cannot be lost.

Nous savons, depuis l'article fondateur de Geymonat, Müller et Triantafyllidis, qu'en élasticité linéaire l'homogénéisation périodique ne conserve pas nécessairement l'ellipticité forte. Ce phénomène est lié au flambage microscopique des composites. Notre contribution consiste à examiner le rôle de l'isotropie dans ce type de pathologie. Le mélange de deux phases isotropes peut en effet conduire à cette perte si l'arrangement est celui d'un laminé. Nous montrons en revanche que, si un arrangement de type matrice/inclusion produit un tenseur homogénéisé isotrope, alors la forte ellipticité est conservée.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.09.014
Francfort, Gilles A. 1; Gloria, Antoine 2, 3

1 L.A.G.A. (UMR CNRS 7539), Université Paris-Nord, Villetaneuse, France
2 Université libre de Bruxelles (ULB), Brussels, Belgium
3 Inria, Lille, France
@article{CRMATH_2016__354_11_1139_0,
     author = {Francfort, Gilles A. and Gloria, Antoine},
     title = {Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1139--1144},
     publisher = {Elsevier},
     volume = {354},
     number = {11},
     year = {2016},
     doi = {10.1016/j.crma.2016.09.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2016.09.014/}
}
TY  - JOUR
AU  - Francfort, Gilles A.
AU  - Gloria, Antoine
TI  - Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 1139
EP  - 1144
VL  - 354
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2016.09.014/
DO  - 10.1016/j.crma.2016.09.014
LA  - en
ID  - CRMATH_2016__354_11_1139_0
ER  - 
%0 Journal Article
%A Francfort, Gilles A.
%A Gloria, Antoine
%T Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity
%J Comptes Rendus. Mathématique
%D 2016
%P 1139-1144
%V 354
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2016.09.014/
%R 10.1016/j.crma.2016.09.014
%G en
%F CRMATH_2016__354_11_1139_0
Francfort, Gilles A.; Gloria, Antoine. Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1139-1144. doi : 10.1016/j.crma.2016.09.014. http://www.numdam.org/articles/10.1016/j.crma.2016.09.014/

[1] Briane, M.; Francfort, G.A. Loss of ellipticity through homogenization in linear elasticity, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 5, pp. 905-928

[2] Geymonat, G.; Müller, S.; Triantafyllidis, N. Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity, Arch. Ration. Mech. Anal., Volume 122 (1993), pp. 231-290

[3] Gutiérrez, S. Laminations in linearized elasticity: the isotropic non-very strongly elliptic case, J. Elasticity, Volume 53 (1998/1999) no. 3, pp. 215-256

[4] Müller, S. Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Ration. Mech. Anal., Volume 99 (1987) no. 3, pp. 189-212

[5] Nečas, J. Sur les normes équivalentes dans Wk(Ω) et sur la coercivité des formes formellement positives, Équations aux derivées partielles, Séminaire de mathématiques supérieures, vol. 19, 1966, pp. 101-108

Cited by Sources: