Dynamical systems/Probability theory
Approximations of standard equivalence relations and Bernoulli percolation at pu
Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1114-1118.

The goal of this note is to announce certain results in orbit equivalence theory, especially concerning the approximation of p.m.p. standard equivalence relations by increasing sequences of sub-relations, with application to the behavior of the Bernoulli percolation on Cayley graphs at the threshold pu.

Le but de cette note est d'annoncer certains résultats d'équivalence orbitale, concernant notamment la notion d'approximation de relations d'équivalence standard préservant la mesure de probabilité par suites croissantes de sous-relations, avec application au comportement en pu de la percolation de Bernoulli sur les graphes de Cayley.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.09.011
Gaboriau, Damien 1; Tucker-Drob, Robin 2

1 CNRS, Unité de mathématiques pures et appliquées, ENS-Lyon, Université de Lyon, France
2 Department of Mathematics, Texas A&M University, College Station, TX, USA
@article{CRMATH_2016__354_11_1114_0,
     author = {Gaboriau, Damien and Tucker-Drob, Robin},
     title = {Approximations of standard equivalence relations and {Bernoulli} percolation at \protect\emph{p}\protect\textsubscript{\protect\emph{u}}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1114--1118},
     publisher = {Elsevier},
     volume = {354},
     number = {11},
     year = {2016},
     doi = {10.1016/j.crma.2016.09.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2016.09.011/}
}
TY  - JOUR
AU  - Gaboriau, Damien
AU  - Tucker-Drob, Robin
TI  - Approximations of standard equivalence relations and Bernoulli percolation at pu
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 1114
EP  - 1118
VL  - 354
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2016.09.011/
DO  - 10.1016/j.crma.2016.09.011
LA  - en
ID  - CRMATH_2016__354_11_1114_0
ER  - 
%0 Journal Article
%A Gaboriau, Damien
%A Tucker-Drob, Robin
%T Approximations of standard equivalence relations and Bernoulli percolation at pu
%J Comptes Rendus. Mathématique
%D 2016
%P 1114-1118
%V 354
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2016.09.011/
%R 10.1016/j.crma.2016.09.011
%G en
%F CRMATH_2016__354_11_1114_0
Gaboriau, Damien; Tucker-Drob, Robin. Approximations of standard equivalence relations and Bernoulli percolation at pu. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1114-1118. doi : 10.1016/j.crma.2016.09.011. http://www.numdam.org/articles/10.1016/j.crma.2016.09.011/

[1] Feldman, J.; Moore, C. Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc., Volume 234 (1977) no. 2, pp. 289-324

[2] Gaboriau, D. Invariants L2 de relations d'équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci., Volume 95 (2002), pp. 93-150

[3] Gaboriau, D. Invariant percolation and harmonic Dirichlet functions, Geom. Funct. Anal., Volume 15 (2005) no. 5, pp. 1004-1051

[4] D. Gaboriau, R. Tucker-Drob, Approximations and dimensions of standard equivalence relations, in preparation.

[5] Häggström, O.; Peres, Y. Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously, Probab. Theory Relat. Fields, Volume 113 (1999) no. 2, pp. 273-285

[6] Ioana, A.; Kechris, A.S.; Tsankov, T. Sub-equivalence relations and positive-definite functions, Groups Geom. Dyn., Volume 3 (2009) no. 4, pp. 579-625

[7] Jones, V.F.R.; Schmidt, K. Asymptotically invariant sequences and approximate finiteness, Amer. J. Math., Volume 109 (1987) no. 1, pp. 91-114

[8] Lyons, R.; Peres, Y. Probability on Trees and Networks, Cambridge University Press, New York, 2017 (pp. xvi + 699)

[9] Lyons, R.; Schramm, O. Indistinguishability of percolation clusters, Ann. Probab., Volume 27 (1999) no. 4, pp. 1809-1836

[10] Ornstein, D.; Weiss, B. Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.), Volume 2 (1980) no. 1, pp. 161-164

[11] Peres, Y. Percolation on nonamenable products at the uniqueness threshold, Ann. Inst. Henri Poincaré Probab. Stat., Volume 36 (2000) no. 3, pp. 395-406

Cited by Sources: