Complex analysis
Advances on the coefficients of bi-prestarlike functions
[Avancées sur les coefficients des fonctions bi-pré-étoilées]
Comptes Rendus. Mathématique, Tome 354 (2016) no. 10, pp. 980-985.

Depuis 1923, lorsque Löwner a montré que l'inverse de la fonction de Koebe fournit la majoration optimale pour les coefficients des inverses des fonctions univalentes, s'est posé le défi de trouver des bornes fines pour les coefficients des inverses de fonctions univalentes dans certaines classes. Ce problème s'est révélé être encore plus intriqué sous la condition de bi-univalence. Utilisant les développements de polynômes de Faber pour les coefficients des fonctions bi-pré-étoilées, nous améliorons dans cette Note quelques estimations déjà connues.

Since 1923, when Löwner proved that the inverse of the Koebe function provides the best upper bound for the coefficients of the inverses of univalent functions, finding sharp bounds for the coefficients of the inverses of subclasses of univalent functions turned out to be a challenge. Coefficient estimates for the inverses of such functions proved to be even more involved under the bi-univalency requirement. In this paper, we use the Faber polynomial expansions to find upper bounds for the coefficients of bi-prestarlike functions and consequently advance some of the previously known estimates.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.08.009
Jahangiri, Jay M. 1 ; Hamidi, Samaneh G. 2

1 Department of Mathematical Sciences, Kent State University, Burton, OH 44021-9500, USA
2 Department of Mathematics, Brigham Young University, Provo, UT 84604, USA
@article{CRMATH_2016__354_10_980_0,
     author = {Jahangiri, Jay M. and Hamidi, Samaneh G.},
     title = {Advances on the coefficients of bi-prestarlike functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {980--985},
     publisher = {Elsevier},
     volume = {354},
     number = {10},
     year = {2016},
     doi = {10.1016/j.crma.2016.08.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2016.08.009/}
}
TY  - JOUR
AU  - Jahangiri, Jay M.
AU  - Hamidi, Samaneh G.
TI  - Advances on the coefficients of bi-prestarlike functions
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 980
EP  - 985
VL  - 354
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2016.08.009/
DO  - 10.1016/j.crma.2016.08.009
LA  - en
ID  - CRMATH_2016__354_10_980_0
ER  - 
%0 Journal Article
%A Jahangiri, Jay M.
%A Hamidi, Samaneh G.
%T Advances on the coefficients of bi-prestarlike functions
%J Comptes Rendus. Mathématique
%D 2016
%P 980-985
%V 354
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2016.08.009/
%R 10.1016/j.crma.2016.08.009
%G en
%F CRMATH_2016__354_10_980_0
Jahangiri, Jay M.; Hamidi, Samaneh G. Advances on the coefficients of bi-prestarlike functions. Comptes Rendus. Mathématique, Tome 354 (2016) no. 10, pp. 980-985. doi : 10.1016/j.crma.2016.08.009. http://www.numdam.org/articles/10.1016/j.crma.2016.08.009/

[1] Airault, H. Remarks on Faber polynomials, Int. Math. Forum, Volume 3 (2008) no. 9–12, pp. 449-456

[2] Airault, H.; Bouali, A. Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222

[3] Airault, H.; Ren, J. An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367

[4] Brannan, D.A.; Clunie, J.G. Aspects of contemporary complex analysis, Durham, 1–20 July, 1979, Academic Press, London and New York (1980), pp. 1-20

[5] Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983 (MR0708494)

[6] Faber, G. Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408

[7] Gong, S. The Bieberbach Conjecture, AMS/IP Studies in Advanced Mathematics, vol. 12, Amer. Math. Soc., Providence, RI, USA, 1999 (translated from the 1989 Chinese original and revised by the author)

[8] Jahangiri, J.M. On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math., Volume 17 (1986) no. 9, pp. 1140-1144

[9] Jahangiri, J.M.; Hamidi, S.G. Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., Volume 2013 (2013)

[10] Lewin, M. On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68

[11] Löwner, K. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann., Volume 89 (1923) no. 1–2, pp. 103-121

[12] Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z<1, Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112

[13] Ruscheweyh, S. Linear operators between classes of prestarlike functions, Comment. Math. Helv., Volume 52 (1977) no. 4, pp. 497-509

[14] Ruscheweyh, S. Convolutions in Geometric Function Theory, Séminaire de Mathématiques Supérieures, vol. 83, Presses Univ. Montréal, Montreal, QC, Canada, 1982

[15] Schiffer, M. Faber polynomials in the theory of univalent functions, Bull. Amer. Math. Soc., Volume 54 (1948), pp. 503-517

[16] Schur, I. On Faber polynomials, Amer. J. Math., Volume 67 (1945), pp. 33-41

[17] Sheil-Small, T.B.; Silverman, H.; Silvia, E.M. Convolution multipliers and starlike functions, J. Anal. Math., Volume 41 (1982) no. 3, pp. 181-192

[18] Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010), pp. 1188-1192

[19] Todorov, P.G. On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276

Cité par Sources :