Partial differential equations
Quantum ergodicity for Eisenstein functions
[Ergodicité quantique des fonctions d'Eisenstein]
Comptes Rendus. Mathématique, Tome 354 (2016) no. 9, pp. 907-911.

On donne une nouvelle preuve de l'ergodicité quantique des séries d'Eisenstein pour les surfaces de Riemann à pointes. On étend aussi ce résultat en plus grande dimension, en autorisant la courbure variable.

A new proof is given of Quantum Ergodicity for Eisenstein Series for cusped hyperbolic surfaces. This result is also extended to higher dimensional examples, with variable curvature.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.06.006
Bonthonneau, Yannick 1 ; Zelditch, Steve 2

1 CIRGET, UQÀM, 201, av. Président-Kennedy, Montréal, Québec, H2X 3Y7, Canada
2 Department of Mathematics, Northwestern University, Evanston, IL 60208, USA
@article{CRMATH_2016__354_9_907_0,
     author = {Bonthonneau, Yannick and Zelditch, Steve},
     title = {Quantum ergodicity for {Eisenstein} functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {907--911},
     publisher = {Elsevier},
     volume = {354},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crma.2016.06.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2016.06.006/}
}
TY  - JOUR
AU  - Bonthonneau, Yannick
AU  - Zelditch, Steve
TI  - Quantum ergodicity for Eisenstein functions
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 907
EP  - 911
VL  - 354
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2016.06.006/
DO  - 10.1016/j.crma.2016.06.006
LA  - en
ID  - CRMATH_2016__354_9_907_0
ER  - 
%0 Journal Article
%A Bonthonneau, Yannick
%A Zelditch, Steve
%T Quantum ergodicity for Eisenstein functions
%J Comptes Rendus. Mathématique
%D 2016
%P 907-911
%V 354
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2016.06.006/
%R 10.1016/j.crma.2016.06.006
%G en
%F CRMATH_2016__354_9_907_0
Bonthonneau, Yannick; Zelditch, Steve. Quantum ergodicity for Eisenstein functions. Comptes Rendus. Mathématique, Tome 354 (2016) no. 9, pp. 907-911. doi : 10.1016/j.crma.2016.06.006. http://www.numdam.org/articles/10.1016/j.crma.2016.06.006/

[1] Bonthonneau, Y. Long time quantum evolution of observables, Commun. Math. Phys., Volume 343 (2016) no. 1, pp. 311-359

[2] Bonthonneau, Y. Weyl laws for manifolds with hyperbolic cusps, December 2015 | arXiv

[3] Colin de Verdière, Y. Une nouvelle démonstration du prolongement méromorphe des séries d'Eisenstein, C. R. Acad. Sci. Paris, Sér. I Math., Volume 293 (1981) no. 7, pp. 361-363

[4] Colin de Verdière, Y. Ergodicité et fonctions propres du Laplacien, Commun. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502

[5] Müller, Werner The point spectrum and spectral geometry for Riemannian manifolds with cusps, Math. Nachr., Volume 125 (1986), pp. 243-257

[6] Müller, Werner Spectral geometry and scattering theory for certain complete surfaces of finite volume, Invent. Math., Volume 109 (1992) no. 2, pp. 265-305

[7] Sarnak, Peter Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Commun. Pure Appl. Math., Volume 34 (1981) no. 6, pp. 719-739

[8] Zelditch, Steven Pseudodifferential analysis on hyperbolic surfaces, J. Funct. Anal., Volume 68 (1986) no. 1, pp. 72-105

[9] Zelditch, Steven Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941

[10] Zelditch, Steven Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, J. Funct. Anal., Volume 97 (1991) no. 1, pp. 1-49

[11] Zworski, Maciej Semiclassical Analysis, Grad. Stud. Math., vol. 138, American Mathematical Society, Providence, RI, 2012

Cité par Sources :