Partial differential equations/Numerical analysis
Constructing exact sequences on non-conforming discrete spaces
[Construction de suites exactes sur des espaces discrets non conformes]
Comptes Rendus. Mathématique, Tome 354 (2016) no. 7, pp. 691-696.

Dans cette note, nous proposons un procédé général pour construire des suites exactes autour d'un espace non conforme, et nous montrons comment ce procédé peut servir à écrire une loi de Gauss discrète convenable dans le cadre d'approximations Galerkin discontinues (DG) des équations de Maxwell temporelles en 2d.

In this note, we propose a general procedure to construct exact sequences involving a non-conforming function space and we show how this construction can be used to derive a proper discrete Gauss law for structure-preserving discontinuous Galerkin (DG) approximations to the time-dependent 2d Maxwell equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.03.008
Campos Pinto, Martin 1

1 CNRS, Sorbonne Universités, UPMC Université Paris-6, UMR 7598, Laboratoire Jacques-Louis-Lions, 4, place Jussieu, 75005 Paris, France
@article{CRMATH_2016__354_7_691_0,
     author = {Campos Pinto, Martin},
     title = {Constructing exact sequences on non-conforming discrete spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {691--696},
     publisher = {Elsevier},
     volume = {354},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crma.2016.03.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2016.03.008/}
}
TY  - JOUR
AU  - Campos Pinto, Martin
TI  - Constructing exact sequences on non-conforming discrete spaces
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 691
EP  - 696
VL  - 354
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2016.03.008/
DO  - 10.1016/j.crma.2016.03.008
LA  - en
ID  - CRMATH_2016__354_7_691_0
ER  - 
%0 Journal Article
%A Campos Pinto, Martin
%T Constructing exact sequences on non-conforming discrete spaces
%J Comptes Rendus. Mathématique
%D 2016
%P 691-696
%V 354
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2016.03.008/
%R 10.1016/j.crma.2016.03.008
%G en
%F CRMATH_2016__354_7_691_0
Campos Pinto, Martin. Constructing exact sequences on non-conforming discrete spaces. Comptes Rendus. Mathématique, Tome 354 (2016) no. 7, pp. 691-696. doi : 10.1016/j.crma.2016.03.008. http://www.numdam.org/articles/10.1016/j.crma.2016.03.008/

[1] Arnold, D.N.; Falk, R.S.; Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (NS), Volume 47 (2010) no. 2, pp. 281-354

[2] Boffi, D. A note on the deRham complex and a discrete compactness property, Appl. Math. Lett., Volume 14 (January 2001) no. 1, pp. 33-38

[3] Boffi, D. Compatible discretizations for eigenvalue problems, Compatible Spatial Discretizations, Springer New York, New York, NY, 2006, pp. 121-142

[4] Boffi, D.; Brezzi, F.; Fortin, M. Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44, Springer, 2013

[5] Bossavit, A. Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, Physical Science, Measurement and Instrumentation, Management and Education – Reviews, IEE Proceedings A, 1988, pp. 493-500

[6] Bossavit, A. Un nouveau point de vue sur les éléments mixtes, Matapli (Bull. Soc. Math. Appl. Ind.), Volume 20 (1989), pp. 23-35 (in French)

[7] Campos Pinto, M.; Mounier, Marie; Sonnendrücker, E. Handling the divergence constraints in Maxwell and Vlasov–Maxwell simulations, Appl. Math. Comput., Volume 272 (January 2016), pp. 403-419

[8] M. Campos Pinto, E. Sonnendrücker, Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law, submitted, . | HAL

[9] M. Campos Pinto, E. Sonnendrücker, Compatible Maxwell solvers with particles II: conforming and non-conforming 2D schemes with a strong Faraday law, submitted, . | HAL

[10] Campos Pinto, M.; Sonnendrücker, E. Gauss-compatible Galerkin schemes for time-dependent Maxwell equations, Math. Comput. (2016) (electronic) | DOI

[11] Cea, J. Approximation variationnelle des problèmes aux limites, Ann. Inst. Fourier, Volume 14 (1964) no. 2, pp. 345-444

[12] Costabel, M.; Dauge, M. Computation of resonance frequencies for Maxwell equations in non-smooth domains, Topics in Computational Wave Propagation, Springer, Berlin, 2003, pp. 125-161

[13] Demkowicz, L. Polynomial exact sequences and projection-based interpolation with application to Maxwell equations, Mixed Finite Elements, Compatibility Conditions, and Applications, Springer-Verlag, Berlin, 2008 (Fondazione C.I.M.E., Florence)

[14] Fezoui, L.; Lanteri, S.; Lohrengel, S.; Piperno, S. Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Math. Model. Numer. Anal., Volume 39 (November 2005) no. 6, pp. 1149-1176

[15] Hiptmair, R. Finite elements in computational electromagnetism, Acta Numer., Volume 11 (2002), pp. 237-339

[16] Kotiuga, P.R. Hodge decompositions and computational electromagnetics, Mc Gill University Montréal, Canada, October 1984 (PhD thesis)

[17] Nédélec, J.-C. Mixed finite elements in R3, Numer. Math., Volume 35 (1980) no. 3, pp. 315-341

[18] White, D.A.; Koning, J.M.; Rieben, R.N. Development and application of compatible discretizations of Maxwell's equations, Compatible Spatial Discretizations, Springer, New York, 2006, pp. 209-234

Cité par Sources :