Combinatorics
Trimness of closed intervals in Cambrian semilattices
[Sveltesse des intervalles bornés d'un demi-treillis cambrien]
Comptes Rendus. Mathématique, Tome 354 (2016) no. 2, pp. 113-120.

Dans cet article, nous donnons une démonstration courte et algébrique du fait que tous les intervalles bornés d'un demi-treillis γ-cambrien Cγ sont sveltes pour tout groupe de Coxeter W et tout élément de Coxeter γW. Cela signifie que, si un tel intervalle a pour longueur k, il existe une chaîne de longueur k consistant en éléments modulaires à gauche, et il y a exactement k éléments sup-irréductibles et k éléments inf-irréductibles. En conséquence, il s'ensuit que chaque intervalle gradué est distributif. Ce problème était ouvert pour tout groupe de Coxeter qui n'est pas un groupe de Weyl.

In this article, we give a short algebraic proof that all closed intervals in a γ-Cambrian semilattice Cγ are trim for any Coxeter group W and any Coxeter element γW. This means that if such an interval has length k, then there exists a maximal chain of length k consisting of left-modular elements, and there are precisely k join- and k meet-irreducible elements in this interval. Consequently, every graded interval in Cγ is distributive. This problem was open for any Coxeter group that is not a Weyl group.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.12.004
Mots clés : Cambrian semilattice, Tamari lattice, Coxeter group, Sortable elements, Trimness
Mühle, Henri 1

1 LIAFA, Université Paris Diderot, Case 7014, F-75205 Paris Cedex 13, France
@article{CRMATH_2016__354_2_113_0,
     author = {M\"uhle, Henri},
     title = {Trimness of closed intervals in {Cambrian} semilattices},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {113--120},
     publisher = {Elsevier},
     volume = {354},
     number = {2},
     year = {2016},
     doi = {10.1016/j.crma.2015.12.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.12.004/}
}
TY  - JOUR
AU  - Mühle, Henri
TI  - Trimness of closed intervals in Cambrian semilattices
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 113
EP  - 120
VL  - 354
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.12.004/
DO  - 10.1016/j.crma.2015.12.004
LA  - en
ID  - CRMATH_2016__354_2_113_0
ER  - 
%0 Journal Article
%A Mühle, Henri
%T Trimness of closed intervals in Cambrian semilattices
%J Comptes Rendus. Mathématique
%D 2016
%P 113-120
%V 354
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.12.004/
%R 10.1016/j.crma.2015.12.004
%G en
%F CRMATH_2016__354_2_113_0
Mühle, Henri. Trimness of closed intervals in Cambrian semilattices. Comptes Rendus. Mathématique, Tome 354 (2016) no. 2, pp. 113-120. doi : 10.1016/j.crma.2015.12.004. http://www.numdam.org/articles/10.1016/j.crma.2015.12.004/

[1] Björner, A.; Brenti, F. Combinatorics of Coxeter Groups, Springer, New York, 2005

[2] Davey, B.A.; Poguntke, W.; Rival, I. A characterization of semi-distributivity, Algebra Universalis, Volume 5 (1975), pp. 72-75

[3] Davey, B.A.; Priestley, H.A. Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002

[4] Day, A. Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices, Canad. J. Math., Volume 31 (1979), pp. 69-78

[5] Freese, R.; Ježek, J.; Nation, J.B. Free Lattices, American Mathematical Society, Providence, 1995

[6] Humphreys, J.E. Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990

[7] Ingalls, C.; Thomas, H. Noncrossing partitions and representations of quivers, Compos. Math., Volume 145 (2009), pp. 1533-1562

[8] Kallipoliti, M.; Mühle, H. On the topology of the Cambrian semilattices, Electron. J. Combin., Volume 20 (2013)

[9] Liu, S.-C.; Sagan, B.E. Left-modular elements of lattices, J. Combin. Theory, Ser. A, Volume 91 (2000), pp. 369-385

[10] Markowsky, G. Primes, irreducibles and extremal lattices, Order, Volume 9 (1992), pp. 265-290

[11] Associahedra, Tamari Lattices and Related Structures (Müller-Hoissen, F.; Pallo, J.M.; Stasheff, J., eds.), Birkhäuser, Basel, 2012

[12] Pilaud, V.; Stump, C. EL-Labelings and Canonical Spanning Trees for Subword Complexes, Fields Institute Communication, vol. 69, Springer, New York, 2013

[13] Reading, N. Lattice and order properties of the poset of regions in a hyperplane arrangement, Algebra Universalis, Volume 50 (2003), pp. 179-205

[14] Reading, N. Cambrian lattices, Adv. Math., Volume 205 (2006), pp. 313-353

[15] Reading, N. Sortable elements and Cambrian lattices, Algebra Universalis, Volume 56 (2007), pp. 411-437

[16] Reading, N.; Speyer, D.E. Sortable elements in infinite coxeter groups, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 699-761

[17] Santocanale, L.; Wehrung, F. Sublattices of associahedra and permutohedra, Adv. Appl. Math., Volume 51 (2013), pp. 419-445

[18] Thomas, H. An analogue of distributivity for ungraded lattices, Order, Volume 23 (2006), pp. 249-269

Cité par Sources :

This work was funded by the FWF Research Grant No. Z130-N13, and by a Public Grant overseen by the French National Research Agency (ANR) as part of the “Investissements d'Avenir” Program (Reference: ANR-10-LABX-0098).