Combinatorics/Topology
Connectivity of pseudomanifold graphs from an algebraic point of view
Comptes Rendus. Mathématique, Volume 353 (2015) no. 12, pp. 1061-1065.

The connectivity of graphs of simplicial and polytopal complexes is a classical subject going back at least to Steinitz, and the topic has since been studied by many authors, including Balinski, Barnette, Athanasiadis, and Björner. In this note, we provide a unifying approach that allows us to obtain more general results. Moreover, we provide a relation to commutative algebra by relating connectivity problems to graded Betti numbers of the associated Stanley–Reisner rings.

La connexité des graphes des complexes simpliciaux et polytopaux est un sujet classique remontant au moins à Steinitz. Il a été étudié depuis par de nombreux auteurs, dont Balinski, Barnette, Athanasiadis et Björner. Dans cette note, nous présentons une approche unifiée nous permettant d'obtenir des résultats plus généraux. De plus, nous faisons un lien avec l'algèbre commutative en rapprochant les problèmes de connexité des nombres de Betti gradués des anneaux de Stanley–Reisner associés.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.09.018
Adiprasito, Karim A. 1, 2; Goodarzi, Afshin 3; Varbaro, Matteo 4

1 Institut des hautes études scientifiques, Bures-sur-Yvette, France
2 Einstein Institute for Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel
3 Department of Mathematics, Kungliga Tekniska Högskolan, S-100 44 Stockholm, Sweden
4 Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35-16146, Genova, Italy
@article{CRMATH_2015__353_12_1061_0,
     author = {Adiprasito, Karim A. and Goodarzi, Afshin and Varbaro, Matteo},
     title = {Connectivity of pseudomanifold graphs from an algebraic point of view},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1061--1065},
     publisher = {Elsevier},
     volume = {353},
     number = {12},
     year = {2015},
     doi = {10.1016/j.crma.2015.09.018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.09.018/}
}
TY  - JOUR
AU  - Adiprasito, Karim A.
AU  - Goodarzi, Afshin
AU  - Varbaro, Matteo
TI  - Connectivity of pseudomanifold graphs from an algebraic point of view
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 1061
EP  - 1065
VL  - 353
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.09.018/
DO  - 10.1016/j.crma.2015.09.018
LA  - en
ID  - CRMATH_2015__353_12_1061_0
ER  - 
%0 Journal Article
%A Adiprasito, Karim A.
%A Goodarzi, Afshin
%A Varbaro, Matteo
%T Connectivity of pseudomanifold graphs from an algebraic point of view
%J Comptes Rendus. Mathématique
%D 2015
%P 1061-1065
%V 353
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.09.018/
%R 10.1016/j.crma.2015.09.018
%G en
%F CRMATH_2015__353_12_1061_0
Adiprasito, Karim A.; Goodarzi, Afshin; Varbaro, Matteo. Connectivity of pseudomanifold graphs from an algebraic point of view. Comptes Rendus. Mathématique, Volume 353 (2015) no. 12, pp. 1061-1065. doi : 10.1016/j.crma.2015.09.018. http://www.numdam.org/articles/10.1016/j.crma.2015.09.018/

[1] Athanasiadis, C.A. Some combinatorial properties of flag simplicial pseudomanifolds and spheres, Ark. Mat., Volume 49 (2011) no. 1, pp. 17-29

[2] Barnette, D. Decompositions of homology manifolds and their graphs, Isr. J. Math., Volume 41 (1982) no. 3, pp. 203-212

[3] Björner, A.; Las Vergnas, M.; Sturmfels, B.; White, N.; Ziegler, G.M. Oriented Matroids, Encyclopedia of Mathematics and Its Applications, vol. 46, Cambridge University Press, Cambridge, UK, 1999

[4] Björner, A.; Vorwerk, K. On the connectivity of manifold graphs, Proc. Amer. Math. Soc., Volume 143 (2015) no. 10, pp. 4123-4132

[5] Goodarzi, A. Clique vectors of k-connected chordal graphs, J. Comb. Theory, Ser. A, Volume 132 (2015), pp. 188-193

[6] Herzog, J.; Hibi, T. Monomial Ideals, Graduate Texts in Mathematics, vol. 260, Springer-Verlag London Ltd., London, 2011

[7] Miller, E.; Sturmfels, B. Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005

[8] Steinitz, E. Polyeder und Raumeinteilungen (Meyer, W.F.; Mohrmann, H., eds.), Encyklopädie der mathematischen Wissenschaften, Dritter Band: Geometrie, III.1.2., Heft 9, Kapitel III A B 12, B. G. Teubner, Leipzig, Germany, 1922, pp. 1-139

[9] Ziegler, G.M. Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer, New York, 1995 (revised edition, 1998, seventh updated printing 2007)

Cited by Sources: