Numerical analysis
A robust coarse space for optimized Schwarz methods: SORAS-GenEO-2
Comptes Rendus. Mathématique, Volume 353 (2015) no. 10, pp. 959-963.

Optimized Schwarz methods (OSM) are very popular methods that were introduced in [11] for elliptic problems and in [3] for propagative wave phenomena. We build here a coarse space for which the convergence rate of the two-level method is guaranteed regardless of the regularity of the coefficients. We do this by introducing a symmetrized variant of the ORAS (Optimized Restricted Additive Schwarz) algorithm [17] and by identifying the problematic modes using two different generalized eigenvalue problems instead of only one as in [16,15] for the ASM (Additive Schwarz method), BDD (Balancing Domain Decomposition [12]) or FETI (Finite-Element Tearing and Interconnection [6]) methods.

Les méthodes de Schwarz optimisées sont des méthodes très populaires, qui ont été introduites dans [11] pour des problèmes elliptiques et dans [3] pour des phénomènes de propagation d'ondes. Nous construisons ici un espace grossier pour lequel le taux de convergence de la méthode à deux niveaux peut être prescrit à l'avance sans hypothèse sur la régularité des coefficients. Ceci est rendu possible par l'introduction d'une version symétrisée de la méthode ORAS (Optimized Restricted Additive Schwarz) [17] ainsi que par l'identification des modes problématiques via deux problèmes aux valeurs propres généralisées au lieu d'un seul comme dans [16,15] pour les méthodes ASM (Additive Schwarz method), BDD (Balancing Domain Decomposition [12]) ou FETI (Finite-Element Tearing and Interconnection [6]).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.07.014
Haferssas, Ryadh 1, 2; Jolivet, Pierre 1, 2; Nataf, Frédéric 1, 2

1 Laboratoire Jacques-Louis-Lions, CNRS UMR 7598, Université Pierre-et-Marie-Curie, 75252 Paris cedex 05, France
2 INRIA Rocquencourt, Alpines, BP 105, 78153 Le Chesnay cedex, France
@article{CRMATH_2015__353_10_959_0,
     author = {Haferssas, Ryadh and Jolivet, Pierre and Nataf, Fr\'ed\'eric},
     title = {A robust coarse space for optimized {Schwarz} methods: {SORAS-GenEO-2}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {959--963},
     publisher = {Elsevier},
     volume = {353},
     number = {10},
     year = {2015},
     doi = {10.1016/j.crma.2015.07.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.07.014/}
}
TY  - JOUR
AU  - Haferssas, Ryadh
AU  - Jolivet, Pierre
AU  - Nataf, Frédéric
TI  - A robust coarse space for optimized Schwarz methods: SORAS-GenEO-2
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 959
EP  - 963
VL  - 353
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.07.014/
DO  - 10.1016/j.crma.2015.07.014
LA  - en
ID  - CRMATH_2015__353_10_959_0
ER  - 
%0 Journal Article
%A Haferssas, Ryadh
%A Jolivet, Pierre
%A Nataf, Frédéric
%T A robust coarse space for optimized Schwarz methods: SORAS-GenEO-2
%J Comptes Rendus. Mathématique
%D 2015
%P 959-963
%V 353
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.07.014/
%R 10.1016/j.crma.2015.07.014
%G en
%F CRMATH_2015__353_10_959_0
Haferssas, Ryadh; Jolivet, Pierre; Nataf, Frédéric. A robust coarse space for optimized Schwarz methods: SORAS-GenEO-2. Comptes Rendus. Mathématique, Volume 353 (2015) no. 10, pp. 959-963. doi : 10.1016/j.crma.2015.07.014. http://www.numdam.org/articles/10.1016/j.crma.2015.07.014/

[1] Cai, X.-C.; Sarkis, M. A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., Volume 21 (1999), pp. 239-247

[2] Conen, L.; Dolean, V.; Krause, R.; Nataf, F. A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator, J. Comput. Appl. Math., Volume 271 (2014), pp. 83-99

[3] Després, B. Décomposition de domaine et problème de Helmholtz, C. R. Acad. Sci. Paris, Ser. I, Volume 311 (1990) no. 6, pp. 313-316

[4] Després, B. Domain decomposition method and the Helmholtz problem, II, Newark, DE, 1993, SIAM, Philadelphia, PA, USA (1993), pp. 197-206

[5] Farhat, C.; Macedo, A.; Lesoinne, M. A two-level domain decomposition method for the iterative solution of high-frequency exterior Helmholtz problems, Numer. Math., Volume 85 (2000) no. 2, pp. 283-303

[6] Farhat, C.; Roux, F.-X. A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Eng., Volume 32 (1991), pp. 1205-1227

[7] Gander, M.J. Optimized Schwarz methods, SIAM J. Numer. Anal., Volume 44 (2006) no. 2, pp. 699-731

[8] Gander, M.J.; Magoulès, F.; Nataf, F. Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput., Volume 24 (2002) no. 1, pp. 38-60

[9] Hecht, F. New development in freefem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265

[10] Japhet, C.; Nataf, F.; Roux, F.-X. The optimized order 2 method with a coarse grid preconditioner: application to convection–diffusion problems (Bjorstad, P.; Espedal, M.; Keyes, D., eds.), Ninth International Conference on Domain Decomposition Methods in Science and Engineering, John Wiley & Sons, 1998, pp. 382-389

[11] Lions, P.-L. On the Schwarz alternating method, III: a variant for nonoverlapping subdomains, Houston, TX, USA, 20–22 March 1989 (1990)

[12] Mandel, J. Balancing domain decomposition, Commun. Appl. Numer. Methods, Volume 9 (1992), pp. 233-241

[13] Nepomnyaschikh, S.V. Mesh theorems of traces, normalizations of function traces and their inversions, Sov. J. Numer. Anal. Math. Model., Volume 6 (1991), pp. 1-25

[14] Schwarz, H.A. Über einen Grenzübergang durch alternierendes Verfahren, Vierteljahrsschr. Nat.forsch. Ges. Zür., Volume 15 (1870), pp. 272-286

[15] Spillane, N.; Dolean, V.; Hauret, P.; Nataf, F.; Pechstein, C.; Scheichl, R. Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Numer. Math., Volume 126 (2014) no. 4, pp. 741-770

[16] Spillane, N.; Dolean, V.; Hauret, P.; Nataf, F.; Rixen, D. Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 5–6, pp. 197-201

[17] St-Cyr, A.; Gander, M.J.; Thomas, S.J. Optimized multiplicative, additive, and restricted additive Schwarz preconditioning, SIAM J. Sci. Comput., Volume 29 (2007) no. 6, pp. 2402-2425 (electronic)

[18] Toselli, A.; Widlund, O. Domain Decomposition Methods – Algorithms and Theory, Springer Series in Computational Mathematics, vol. 34, Springer, 2005

Cited by Sources: