Partial differential equations/Numerical analysis
An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation
[Un problème d'inclusion pour approcher les coefficients homogénéisés d'une équation elliptique]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 9, pp. 801-806.

Nous considérons une équation de diffusion à coefficients hautement oscillants qui admet une limite homogénéisée, et nous introduisons une variante du problème du correcteur standard, qui se formalise comme un problème d'inclusion. Celui-ci s'écrit comme une équation de diffusion posée dans tout l'espace, dans laquelle la matrice de diffusion est uniforme à l'extérieur d'une boule de rayon R. Nous introduisons ensuite trois approximations des coefficients homogénéisés, calculées à partir de la solution de ce problème. Ces approximations, qui sont des variantes des approximations standard basées sur le problème du correcteur tronqué (méthode de supercellule), convergent lorsque R vers le coefficient homogénéisé. Nous mentionnons également des méthodes de résolution numérique efficaces pour ce nouveau problème.

We consider a diffusion equation with highly oscillatory coefficients that admits a homogenized limit. As an alternative to standard corrector problems, we introduce here an embedded corrector problem, written as a diffusion equation in the whole space, in which the diffusion matrix is uniform outside some ball of radius R. Using that problem, we next introduce three approximations of the homogenized coefficients. These approximations, which are variants of the standard approximations obtained using truncated (supercell) corrector problems, are shown to converge to the homogenized coefficient when R. We also discuss efficient numerical methods to solve the embedded corrector problem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.06.019
Cancès, Éric 1, 2 ; Ehrlacher, Virginie 1, 2 ; Legoll, Frédéric 3, 2 ; Stamm, Benjamin 4

1 CERMICS, École des Ponts ParisTech, 77455 Marne-la-Vallée cedex 2, France
2 INRIA Rocquencourt, MATHERIALS project-team, Domaine de Voluceau, BP 105, 78153 Le Chesnay cedex, France
3 Laboratoire Navier, École des Ponts ParisTech, 77455 Marne-la-Vallée cedex 2, France
4 Sorbonne Universités, UPMC Université Paris-6 and CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France
@article{CRMATH_2015__353_9_801_0,
     author = {Canc\`es, \'Eric and Ehrlacher, Virginie and Legoll, Fr\'ed\'eric and Stamm, Benjamin},
     title = {An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {801--806},
     publisher = {Elsevier},
     volume = {353},
     number = {9},
     year = {2015},
     doi = {10.1016/j.crma.2015.06.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.06.019/}
}
TY  - JOUR
AU  - Cancès, Éric
AU  - Ehrlacher, Virginie
AU  - Legoll, Frédéric
AU  - Stamm, Benjamin
TI  - An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 801
EP  - 806
VL  - 353
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.06.019/
DO  - 10.1016/j.crma.2015.06.019
LA  - en
ID  - CRMATH_2015__353_9_801_0
ER  - 
%0 Journal Article
%A Cancès, Éric
%A Ehrlacher, Virginie
%A Legoll, Frédéric
%A Stamm, Benjamin
%T An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation
%J Comptes Rendus. Mathématique
%D 2015
%P 801-806
%V 353
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.06.019/
%R 10.1016/j.crma.2015.06.019
%G en
%F CRMATH_2015__353_9_801_0
Cancès, Éric; Ehrlacher, Virginie; Legoll, Frédéric; Stamm, Benjamin. An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation. Comptes Rendus. Mathématique, Tome 353 (2015) no. 9, pp. 801-806. doi : 10.1016/j.crma.2015.06.019. http://www.numdam.org/articles/10.1016/j.crma.2015.06.019/

[1] Anantharaman, A.; Costaouec, R.; Le Bris, C.; Legoll, F.; Thomines, F. Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments (Bao, W.; Du, Q., eds.), Multiscale Modeling and Analysis for Materials Simulation, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 22, World Scientific, 2011, pp. 197-272

[2] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures, Studies in Mathematics and Its Applications, vol. 5, North-Holland Publishing Co., Amsterdam, New York, 1978

[3] Blanc, X.; Le Bris, C.; Lions, P.-L. Une variante de la théorie de l'homogénéisation stochastique des opérateurs elliptiques, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006) no. 11–12, pp. 717-724

[4] Bourgeat, A.; Piatniski, A. Approximation of effective coefficients in stochastic homogenization, Ann. Inst. Henri Poincaré Probab. Stat., Volume 40 (2004) no. 2, pp. 153-165

[5] E. Cancès, V. Ehrlacher, F. Legoll, B. Stamm, in preparation.

[6] Cancès, E.; Maday, Y.; Stamm, B. Domain decomposition for implicit solvation models, J. Chem. Phys., Volume 139 (2013) no. 5, p. 054111

[7] Christensen, R.M.; Lo, K.H. Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids, Volume 27 (1979) no. 4, pp. 315-330

[8] Cioranescu, D.; Donato, P. An Introduction to Homogenization, Oxford Lecture Series in Mathematics and Its Applications, vol. 17, Oxford University Press, New York, 1999

[9] Cottereau, R. Numerical strategy for unbiased homogenization of random materials, Int. J. Numer. Methods Eng., Volume 95 (2013) no. 1, pp. 71-90

[10] Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 241 (1957) no. 1226, pp. 376-396

[11] Gloria, A. Numerical homogenization: survey, new results and perspectives, ESAIM Proc., Volume 37 (2012), pp. 50-116

[12] Jikov, V.V.; Kozlov, S.M.; Oleinik, O.A. Homogenization of Differential Operators and Integral Functionals, Springer, 1994

[13] Kozlov, S.M. Averaging of random structures, USSR Dokl., Volume 241 (1978) no. 5, pp. 1016-1019

[14] Le Bris, C.; Legoll, F.; Li, K. Approximation grossière d'un problème elliptique à coefficients hautement oscillants, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 7–8, pp. 265-270

[15] Lipparini, F.; Stamm, B.; Cancès, E.; Maday, Y.; Mennucci, B. Fast domain decomposition algorithm for continuum solvation models: energy and first derivatives, J. Chem. Theory Comput., Volume 9 (2013) no. 8, pp. 3637-3648

[16] Murat, F.; Tartar, L. H-convergence, Séminaire d'analyse fonctionnelle et numérique de l'université d'Alger, 1978

[17] Papanicolaou, G.C.; Varadhan, S.R.S. Boundary value problems with rapidly oscillating random coefficients (Fritz, J.; Lebaritz, J.L.; Szasz, D., eds.), Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, Colloquia Mathematica Societ. Janos Bolyai, vol. 10, North-Holland, Amsterdam, 1981, pp. 835-873

Cité par Sources :

We thank Paul Cazeaux for fruitful discussions on questions related to this project. The work of FL is partially supported by ONR under Grant N00014-12-1-0383 and EOARD under Grant FA8655-13-1-3061.