Harmonic analysis/Functional analysis
Hypergroupoids and C*-algebras
Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 911-914.

Let G be a locally compact groupoid. If X is a free and proper G-space, then (XX)/G is a groupoid equivalent to G. We consider the situation where X is proper, but no longer free. The formalism of groupoid C*-algebras and their representations is suitable to attach C*-algebras to this new object.

Soit G un groupoïde localement compact. Si X est un G-espace qui est libre et propre, alors (XX)/G est un groupoïde équivalent à G. On considère la situation où X est seulement propre. Le formalisme des C*-algèbres de groupoïdes permet dʼassocier des C*-algèbres à ce nouvel objet.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.11.003
Holkar, Rohit Dilip 1; Renault, Jean 2

1 Universität Göttingen, Mathematisches Institut, Bunsenstr. 3-5, 37073 Göttingen, Germany
2 Université dʼOrléans et CNRS (UMR 7349 et FR2964), Département de mathématiques, 45067 Orléans Cedex 2, France
@article{CRMATH_2013__351_23-24_911_0,
     author = {Holkar, Rohit Dilip and Renault, Jean},
     title = {Hypergroupoids and {C*-algebras}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {911--914},
     publisher = {Elsevier},
     volume = {351},
     number = {23-24},
     year = {2013},
     doi = {10.1016/j.crma.2013.11.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.003/}
}
TY  - JOUR
AU  - Holkar, Rohit Dilip
AU  - Renault, Jean
TI  - Hypergroupoids and C*-algebras
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 911
EP  - 914
VL  - 351
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.11.003/
DO  - 10.1016/j.crma.2013.11.003
LA  - en
ID  - CRMATH_2013__351_23-24_911_0
ER  - 
%0 Journal Article
%A Holkar, Rohit Dilip
%A Renault, Jean
%T Hypergroupoids and C*-algebras
%J Comptes Rendus. Mathématique
%D 2013
%P 911-914
%V 351
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.11.003/
%R 10.1016/j.crma.2013.11.003
%G en
%F CRMATH_2013__351_23-24_911_0
Holkar, Rohit Dilip; Renault, Jean. Hypergroupoids and C*-algebras. Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 911-914. doi : 10.1016/j.crma.2013.11.003. http://www.numdam.org/articles/10.1016/j.crma.2013.11.003/

[1] Anantharaman-Delaroche, C.; Renault, J. Amenable Groupoids, Monographies de lʼEnseignement Mathématique, vol. 36, LʼEnseignement Mathématique, Genève, 2000 (With a foreword by Georges Skandalis and Appendix B by E. Germain)

[2] Bost, J.-B.; Connes, A. Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Sel. Math. New Ser., Volume 1 (1995) no. 3, pp. 411-457

[3] Connes, A.; Marcolli, M. Noncommutative Geometry, Quantum Fields and Motives, Colloquium Publications, vol. 55, American Mathematical Society, 2008

[4] Ghez, P.; Lima, R.; Roberts, J. W*-categories, Pac. J. Math., Volume 120 (1985), pp. 79-109

[5] Kangni, K.; Toure, I. On groupoid algebras of biinvariant functions, Int. J. Math. Anal., Volume 6 (2012) no. 41–44, pp. 2101-2108

[6] Laca, M.; Larsen, N.; Neshveyev, S. Phase transition in the Connes–Marcolli GL2-system, J. Noncommut. Geom., Volume 1 (2007) no. 4, pp. 397-430

[7] Renault, J. Représentations des produits croisés dʼalgèbres de groupoïdes, J. Oper. Theory, Volume 25 (1987), pp. 3-36

[8] Tzanev, K. C*-algèbres de Hecke et K-théorie, Université Paris-7, December 2000 (PhD thesis)

Cited by Sources: