Mathematical problems in mechanics
The space H(div,) on a surface – Application to Donati-like compatibility conditions on a surface
Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 943-947.

In this Note, we show how the analogue of the classical space H(div,) can be defined on a surface. We then establish several properties of this space, notably the existence of a basic Greenʼs formula satisfied by its elements. These results are then used for identifying Donati-like compatibility conditions on a surface.

Dans cette Note, on montre comment définir lʼanalogue de lʼespace classique H(div,) sur une surface. On établit ensuite diverses propriétés de cet espace, en particulier lʼexistence dʼune formule de Green fondamentale satisfaite par ses éléments. Ces résultats sont ensuite utilisés pour identifier des conditions de compatibilité du type de Donati sur une surface.

Accepted:
Published online:
DOI: 10.1016/j.crma.2013.10.023
Ciarlet, Philippe G. 1; Iosifescu, Oana 2

1 Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
2 Départment de Mathématiques, Université de Montpellier-2, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
@article{CRMATH_2013__351_23-24_943_0,
     author = {Ciarlet, Philippe G. and Iosifescu, Oana},
     title = {The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface {\textendash} {Application} to {Donati-like} compatibility conditions on a surface},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {943--947},
     publisher = {Elsevier},
     volume = {351},
     number = {23-24},
     year = {2013},
     doi = {10.1016/j.crma.2013.10.023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.10.023/}
}
TY  - JOUR
AU  - Ciarlet, Philippe G.
AU  - Iosifescu, Oana
TI  - The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 943
EP  - 947
VL  - 351
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.10.023/
DO  - 10.1016/j.crma.2013.10.023
LA  - en
ID  - CRMATH_2013__351_23-24_943_0
ER  - 
%0 Journal Article
%A Ciarlet, Philippe G.
%A Iosifescu, Oana
%T The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface
%J Comptes Rendus. Mathématique
%D 2013
%P 943-947
%V 351
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.10.023/
%R 10.1016/j.crma.2013.10.023
%G en
%F CRMATH_2013__351_23-24_943_0
Ciarlet, Philippe G.; Iosifescu, Oana. The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface. Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 943-947. doi : 10.1016/j.crma.2013.10.023. http://www.numdam.org/articles/10.1016/j.crma.2013.10.023/

[1] Bernadou, M.; Ciarlet, P.G. Sur lʼellipticité du modèle linéaire de coques de W.T. Koiter (Glowinski, R.; Lions, J.-L., eds.), Computing Methods in Applied Sciences and Engineering, Springer, 1976, pp. 89-136

[2] Bernadou, M.; Ciarlet, P.G.; Miara, B. Existence theorems for two-dimensional linear shell theories, J. Elast., Volume 34 (1994), pp. 111-138

[3] Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods, Springer, 1991

[4] Ciarlet, P.G.; Iosifescu, O. Donati compatibility conditions on a surface – Application to shell theory, J. Math. Pures Appl. (2014) (in press)

[5] Ciarlet, P.G.; Iosifescu, O. Greenʼs formulas with little regularity on a surface – Application to Donati-like compatibility conditions on a surface, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 21–22, pp. 853-858

[6] Ciarlet, P.G.; Mardare, C. Intrinsic formulation of the displacement-traction problem in linearized elasticity, Math. Models Methods Appl. Sci. (2014) (in press)

[7] Geymonat, G.; Krasucki, F. Some remarks on the compatibility conditions in elasticity, Accad. Naz. Sci. XL Mem. Math. Appl., Volume 29 (2005), pp. 175-182

[8] Geymonat, G.; Suquet, P. Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci., Volume 8 (1986), pp. 206-222

[9] Girault, V.; Raviart, P.A. Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin, 1986

Cited by Sources: