Partial differential equations/Mathematical problems in mechanics
Reconstruction of extended sources with small supports in the elliptic equation Δu+μu=F from a single Cauchy data
Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 797-801.

This Note focuses on an algebraic reconstruction method allowing to solve an inverse source problem in the elliptic equation Δu+μu=F from a single Cauchy data. The source term F is a distributed function having compact support within a finite number of small subdomains.

Cette Note porte sur une méthode algébrique permettant de résoudre un problème inverse de sources dans lʼéquation elliptique Δu+μu=F à partir dʼune seule donnée de Cauchy. Le terme source F est une fonction distribuée à support compact contenu dans un ensemble fini de sous-domaines de petites tailles.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.10.010
Abdelaziz, Batoul 1; El Badia, Abdellatif 1; El Hajj, Ahmad 1

1 Université de Technologie de Compiègne, LMAC, 60205 Compiègne cedex, France
@article{CRMATH_2013__351_21-22_797_0,
     author = {Abdelaziz, Batoul and El Badia, Abdellatif and El Hajj, Ahmad},
     title = {Reconstruction of extended sources with small supports in the elliptic equation $ \mathrm{\Delta }u+\mu u=F$ from a single {Cauchy} data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {797--801},
     publisher = {Elsevier},
     volume = {351},
     number = {21-22},
     year = {2013},
     doi = {10.1016/j.crma.2013.10.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.10.010/}
}
TY  - JOUR
AU  - Abdelaziz, Batoul
AU  - El Badia, Abdellatif
AU  - El Hajj, Ahmad
TI  - Reconstruction of extended sources with small supports in the elliptic equation $ \mathrm{\Delta }u+\mu u=F$ from a single Cauchy data
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 797
EP  - 801
VL  - 351
IS  - 21-22
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.10.010/
DO  - 10.1016/j.crma.2013.10.010
LA  - en
ID  - CRMATH_2013__351_21-22_797_0
ER  - 
%0 Journal Article
%A Abdelaziz, Batoul
%A El Badia, Abdellatif
%A El Hajj, Ahmad
%T Reconstruction of extended sources with small supports in the elliptic equation $ \mathrm{\Delta }u+\mu u=F$ from a single Cauchy data
%J Comptes Rendus. Mathématique
%D 2013
%P 797-801
%V 351
%N 21-22
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.10.010/
%R 10.1016/j.crma.2013.10.010
%G en
%F CRMATH_2013__351_21-22_797_0
Abdelaziz, Batoul; El Badia, Abdellatif; El Hajj, Ahmad. Reconstruction of extended sources with small supports in the elliptic equation $ \mathrm{\Delta }u+\mu u=F$ from a single Cauchy data. Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 797-801. doi : 10.1016/j.crma.2013.10.010. http://www.numdam.org/articles/10.1016/j.crma.2013.10.010/

[1] B. Abdelaziz, A. El Badia, A. El Hajj, Reconstruction method for solving some inverse source problems in the elliptic equation u+μu=F from a single Cauchy data, submitted for publication.

[2] Arridge, S.R. Optical tomography in medical imaging, Inverse Probl., Volume 15 (1999) no. 2, p. R41-R93

[3] Chungand, Y.-S.; Chung, S.-Y. Identification of the combination of monopolar and dipolar sources for elliptic equations, Inverse Probl., Volume 25 (2009), p. 085006

[4] El Badia, A.; Ha-Duong, T. An inverse source problem in potential analysis, Inverse Probl., Volume 16 (2000), pp. 651-663

[5] El Badia, A.; Ha-Duong, T. On an inverse source problem for the heat equation. Application to a pollution detection problem, J. Inverse Ill-Posed Probl. (2002), pp. 585-599

[6] El Badia, A.; Nara, T. An inverse source problem for Helmholtzʼs equation from the Cauchy data with a single wave number, Inverse Probl., Volume 27 (2011), p. 105001

[7] Hämäläinen, M.; Hari, R.; Ilmoniemi, R.J.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Mod. Phys., Volume 65 (1993), pp. 413-497

[8] Hanke, M.; Rundell, W. On rational approximation methods of inverse source problems, Inverse Probl. Imaging, Volume 5 (2011), pp. 185-202

[9] Kress, R.; Rundell, W. Reconstruction of extended sources for the Helmholtz equation, Inverse Probl., Volume 29 (2013), p. 035005

[10] Mosher, J.C.; Lewis, P.S.; Leahy, R.M. Multiple dipole modeling and localization from spatio-temporal MEG data, IEEE Trans. Biomed. Eng., Volume 39 (1992), pp. 541-557

[11] Nara, T. An algebraic method for identification of dipoles and quadrupoles, Inverse Probl., Volume 24 (2008), p. 025010

[12] Stevanov, P.; Uhlmann, G. Thermoacoustic tomography with variable sound speed, Inverse Probl., Volume 25 (2009), p. 075011

[13] Stewart, G.W. Introduction to Matrix Computations, Academic Press, New York–London, 1973 (xiii+441 p)

[14] Wang, G.; Li, Y.; Ming, J. Uniqueness theorems in bioluminescence tomography, Med. Phys., Volume 8 (2004), pp. 2289-2299

Cited by Sources: