[Sur le problème de planification pour une classe de jeux à champ moyen]
We give a result of existence and uniqueness of weak solutions to the planning problem for a class of Mean Field Games. This is a kind of optimal transportation problem consisting in the exact controllability at time T of Fokker–Planck equations obtained using drifts arising as the optimal feedbacks from a coupled backward Hamilton–Jacobi–Bellman equation.
Nous donnons un résultat dʼexistence et dʼunicité des solutions faibles du problème de planification pour une classe de jeux à champ moyen. Il sʼagit dʼun problème de transport optimal qui consiste en la contrôlabilité exacte au temps T de lʼéquation de Fokker–Planck en utilisant des champs obtenus comme loi feedback optimale dʼune équation de Hamilton–Jacobi–Bellman couplée.
Accepté le :
Publié le :
Porretta, Alessio 1
@article{CRMATH_2013__351_11-12_457_0,
author = {Porretta, Alessio},
title = {On the planning problem for a class of {Mean} {Field} {Games}},
journal = {Comptes Rendus. Math\'ematique},
pages = {457--462},
year = {2013},
publisher = {Elsevier},
volume = {351},
number = {11-12},
doi = {10.1016/j.crma.2013.07.004},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2013.07.004/}
}
TY - JOUR AU - Porretta, Alessio TI - On the planning problem for a class of Mean Field Games JO - Comptes Rendus. Mathématique PY - 2013 SP - 457 EP - 462 VL - 351 IS - 11-12 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2013.07.004/ DO - 10.1016/j.crma.2013.07.004 LA - en ID - CRMATH_2013__351_11-12_457_0 ER -
%0 Journal Article %A Porretta, Alessio %T On the planning problem for a class of Mean Field Games %J Comptes Rendus. Mathématique %D 2013 %P 457-462 %V 351 %N 11-12 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2013.07.004/ %R 10.1016/j.crma.2013.07.004 %G en %F CRMATH_2013__351_11-12_457_0
Porretta, Alessio. On the planning problem for a class of Mean Field Games. Comptes Rendus. Mathématique, Tome 351 (2013) no. 11-12, pp. 457-462. doi: 10.1016/j.crma.2013.07.004
[1] Mean field games: numerical methods for the planning problem, SIAM J. Control Optim., Volume 50 (2012), pp. 77-109
[2] A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem, Numer. Math., Volume 84 (2000), pp. 375-393
[3] Long time average of mean field games, Netw. Heterog. Media, Volume 7 (2012), pp. 279-301
[4] Application of mean field games to growth theory, Paris–Princeton Lectures on Mathematical Finance 2010, Lect. Notes Math., Springer, Berlin, 2011
[5] Jeux à champ moyen. I. Le cas stationnaire, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 619-625
[6] Jeux à champ moyen. II. Horizon fini et contròle optimal, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 679-684
[7] Mean field games, Jpn. J. Math., Volume 2 (2007), pp. 229-260
[8] Cours au Collège de France www.college-de-france.fr
[9] On the planning problem for the Mean Field Games system, Dyn. Games Appl. (2013) (in press) | DOI
[10] A. Porretta, Weak solutions to Fokker–Planck equations and Mean Field Games, in preparation.
Cité par Sources :





