Numerical Analysis
On the conservativity of cell-centered Galerkin methods
Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, pp. 155-159.

In this work we investigate the conservativity of the cell-centered Galerkin method of Di Pietro (2012) [5] and provide an analytical expression for the conservative flux. The relation with the SUSHI method of Eymard et al. (2010) [10] and with discontinuous Galerkin methods is also explored. The theoretical results are assessed on a numerical example using standard as well as general polygonal grids.

Dans cette note, on étudie la conservativité de la méthode de Galerkine centrée aux mailles de Di Pietro (2012) [5] et on fournit une expression analytique pour le flux numérique. Le lien avec la méthode SUSHI de Eymard et al. (2010) [10] et avec les méthodes de Galerkine discontinues est aussi détaillé. Les résultats théoriques sont validés à la fois sur des maillages standard et polygonaux.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.03.001
Di Pietro, Daniele A. 1

1 University of Montpellier-2, I3M, place Eugène-Bataillon, 34057 Montpellier cedex 5, France
@article{CRMATH_2013__351_3-4_155_0,
     author = {Di Pietro, Daniele A.},
     title = {On the conservativity of cell-centered {Galerkin} methods},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {155--159},
     publisher = {Elsevier},
     volume = {351},
     number = {3-4},
     year = {2013},
     doi = {10.1016/j.crma.2013.03.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.03.001/}
}
TY  - JOUR
AU  - Di Pietro, Daniele A.
TI  - On the conservativity of cell-centered Galerkin methods
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 155
EP  - 159
VL  - 351
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.03.001/
DO  - 10.1016/j.crma.2013.03.001
LA  - en
ID  - CRMATH_2013__351_3-4_155_0
ER  - 
%0 Journal Article
%A Di Pietro, Daniele A.
%T On the conservativity of cell-centered Galerkin methods
%J Comptes Rendus. Mathématique
%D 2013
%P 155-159
%V 351
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.03.001/
%R 10.1016/j.crma.2013.03.001
%G en
%F CRMATH_2013__351_3-4_155_0
Di Pietro, Daniele A. On the conservativity of cell-centered Galerkin methods. Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, pp. 155-159. doi : 10.1016/j.crma.2013.03.001. http://www.numdam.org/articles/10.1016/j.crma.2013.03.001/

[1] Agélas, L.; Di Pietro, D.A.; Droniou, J. The G method for heterogeneous anisotropic diffusion on general meshes, M2AN Math. Model. Numer. Anal., Volume 44 (2010) no. 4, pp. 597-625

[2] Burman, E.; Stamm, B. Local discontinuous Galerkin method with reduced stabilization for diffusion equations, Commun. Comput. Phys., Volume 5 (2009), pp. 498-524

[3] Dawson, C.; Sun, S.; Wheeler, M.F. Compatible algorithms for coupled flow and transport, Comput. Methods Appl. Mech. Engrg., Volume 193 (2004), pp. 2565-2580

[4] Di Pietro, D.A. Cell centered Galerkin methods, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 31-34

[5] Di Pietro, D.A. Cell centered Galerkin methods for diffusive problems, M2AN Math. Model. Numer. Anal., Volume 46 (2012) no. 1, pp. 111-144

[6] Di Pietro, D.A.; Ern, A. Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications, vol. 69, Springer-Verlag, Berlin, 2011

[7] D.A. Di Pietro, S. Lemaire, An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow, preprint hal-00753660, 2012.

[8] Di Pietro, D.A.; Nicaise, S. A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media, Appl. Numer. Math., Volume 63 (2013), pp. 105-116

[9] Droniou, J.; Eymard, R. A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math., Volume 105 (2006) no. 1, pp. 35-71

[10] Eymard, R.; Gallouët, T.; Herbin, R. Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., Volume 30 (2010) no. 4, pp. 1009-1043

[11] Herbin, R.; Hubert, F. Benchmark on discretization schemes for anisotropic diffusion problems on general grids (Eymard, R.; Hérard, J.-M., eds.), Finite Volumes for Complex Applications V, John Wiley & Sons, 2008, pp. 659-692

Cited by Sources: