Differential Geometry
The tetrahedral property and a new Gromov–Hausdorff compactness theorem
Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, pp. 119-122.

We present the Tetrahedral Compactness Theorem, which states that sequences of Riemannian manifolds with a uniform upper bound on volume and diameter that satisfy a uniform tetrahedral property have a subsequence which converges in the Gromov–Hausdorff sense to a countably Hm rectifiable metric space of the same dimension. The tetrahedral property depends only on distances between points in spheres; yet we show it provides a lower bound on the volumes of balls. The proof is based upon intrinsic flat convergence and a new notion called the sliced filling volume of a ball.

Nous présentons le théorème tétraédrique de compacité, qui stipule que les séquences de variétés riemanniennes avec une borne supérieure uniforme sur le volume et sur le diamètre, qui satisfont une propriété tétraédrique uniforme, admettent une sous-suite qui converge, au sens de Gromov–Hausdorff, vers un espace métrique dénombrable Hm, rectifiable, de la même dimension. La propriété tétraédrique ne dépend que de la distance entre les points dans les sphères, mais nous montrons quʼelle fournit une borne inférieure sur le volume des boules.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.02.011
Sormani, Christina 1

1 CUNY Graduate Center and Lehman College, 365 Fifth Avenue, New York, NY 10016, USA
@article{CRMATH_2013__351_3-4_119_0,
     author = {Sormani, Christina},
     title = {The tetrahedral property and a new {Gromov{\textendash}Hausdorff} compactness theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {119--122},
     publisher = {Elsevier},
     volume = {351},
     number = {3-4},
     year = {2013},
     doi = {10.1016/j.crma.2013.02.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.02.011/}
}
TY  - JOUR
AU  - Sormani, Christina
TI  - The tetrahedral property and a new Gromov–Hausdorff compactness theorem
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 119
EP  - 122
VL  - 351
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.02.011/
DO  - 10.1016/j.crma.2013.02.011
LA  - en
ID  - CRMATH_2013__351_3-4_119_0
ER  - 
%0 Journal Article
%A Sormani, Christina
%T The tetrahedral property and a new Gromov–Hausdorff compactness theorem
%J Comptes Rendus. Mathématique
%D 2013
%P 119-122
%V 351
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.02.011/
%R 10.1016/j.crma.2013.02.011
%G en
%F CRMATH_2013__351_3-4_119_0
Sormani, Christina. The tetrahedral property and a new Gromov–Hausdorff compactness theorem. Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, pp. 119-122. doi : 10.1016/j.crma.2013.02.011. http://www.numdam.org/articles/10.1016/j.crma.2013.02.011/

[1] Ambrosio, Luigi; Kirchheim, Bernd Currents in metric spaces, Acta Math., Volume 185 (2000) no. 1, pp. 1-80

[2] Gromov, Mikhael Filling Riemannian manifolds, J. Differential Geom., Volume 18 (1983) no. 1, pp. 1-147

[3] Gromov, Misha Metric Structures for Riemannian and Non-Riemannian Spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston Inc., Boston, MA, 1999 (based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean Michael Bates)

[4] Sormani, Christina Properties of the intrinsic flat distance | arXiv

[5] Sormani, Christina; Wenger, Stefan Weak convergence and cancellation. Appendix by Raanan Schul and Stefan Wenger, Calc. Var. Partial Differential Equations, Volume 38 (2010) no. 1–2

[6] Sormani, Christina; Wenger, Stefan Intrinsic flat convergence of manifolds and other integral current spaces. Appendix by Christina Sormani, J. Differential Geom., Volume 87 (2011)

Cited by Sources: