Complex Analysis
Squares of positive (p,p)-forms
[Carrés de (p,p)-formes positives]
Comptes Rendus. Mathématique, Tome 351 (2013) no. 1-2, pp. 27-32.

Nous montrons que si α est une (2,2)-forme positive alors α2 lʼest aussi. Nous prouvons également que ceci nʼest plus vrai pour les formes de degré supérieur.

We show that if α is a positive (2,2)-form, then so is α2. We also prove that this is no longer true for forms of higher degree.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.01.009
Błocki, Zbigniew 1 ; Pliś, Szymon 2

1 Instytut Matematyki, Uniwersytet Jagielloński, Łojasiewicza 6, 30-348 Kraków, Poland
2 Instytut Matematyki, Politechnika Krakowska, Warszawska 24, 31-155 Kraków, Poland
@article{CRMATH_2013__351_1-2_27_0,
     author = {B{\l}ocki, Zbigniew and Pli\'s, Szymon},
     title = {Squares of positive $ (p,p)$-forms},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {27--32},
     publisher = {Elsevier},
     volume = {351},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crma.2013.01.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.01.009/}
}
TY  - JOUR
AU  - Błocki, Zbigniew
AU  - Pliś, Szymon
TI  - Squares of positive $ (p,p)$-forms
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 27
EP  - 32
VL  - 351
IS  - 1-2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.01.009/
DO  - 10.1016/j.crma.2013.01.009
LA  - en
ID  - CRMATH_2013__351_1-2_27_0
ER  - 
%0 Journal Article
%A Błocki, Zbigniew
%A Pliś, Szymon
%T Squares of positive $ (p,p)$-forms
%J Comptes Rendus. Mathématique
%D 2013
%P 27-32
%V 351
%N 1-2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.01.009/
%R 10.1016/j.crma.2013.01.009
%G en
%F CRMATH_2013__351_1-2_27_0
Błocki, Zbigniew; Pliś, Szymon. Squares of positive $ (p,p)$-forms. Comptes Rendus. Mathématique, Tome 351 (2013) no. 1-2, pp. 27-32. doi : 10.1016/j.crma.2013.01.009. http://www.numdam.org/articles/10.1016/j.crma.2013.01.009/

[1] E. Bedford, B.A. Taylor, Simple and positive vectors in the exterior algebra of Cn, preprint, 1974.

[2] J.-P. Demailly, Complex Analytic and Differential Geometry, monograph, 1997, available at http://www-fourier.ujf-grenoble.fr/~demailly.

[3] S. Dinew, On positive C(2,2)(C4) forms, preprint, 2006.

[4] Harris, J. Algebraic Geometry. A First Course, Grad. Texts in Math., vol. 133, Springer, 1995

[5] Harvey, R.; Knapp, A.W. Positive (p,p) forms, Wirtingerʼs inequality, and currents (Kujala, R.O.; Vitter, A.L. III, eds.), Value Distribution Theory, Part A, Dekker, 1974, pp. 43-62

Cité par Sources :