Lie Algebras/Mathematical Physics
The explicit equivalence between the standard and the logarithmic star product for Lie algebras, II
Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 745-748.

We give a detailed proof of Rossi (2012) [10, Theorem 3.3] and comment on its nature and its relationship with the Grothendieck–Teichmüller group.

On donne la démonstration détaillée de Rossi (2012) [10, Théorème 3.3] ; après, on commente la nature de ce résultat and sa relation avec le groupe de Grothendieck–Teichmüller.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.09.003
Rossi, Carlo A. 1

1 MPIM Bonn, Vivatsgasse 7, 53111 Bonn, Germany
@article{CRMATH_2012__350_15-16_745_0,
     author = {Rossi, Carlo A.},
     title = {The explicit equivalence between the standard and the logarithmic star product for {Lie} algebras, {II}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {745--748},
     publisher = {Elsevier},
     volume = {350},
     number = {15-16},
     year = {2012},
     doi = {10.1016/j.crma.2012.09.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2012.09.003/}
}
TY  - JOUR
AU  - Rossi, Carlo A.
TI  - The explicit equivalence between the standard and the logarithmic star product for Lie algebras, II
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 745
EP  - 748
VL  - 350
IS  - 15-16
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2012.09.003/
DO  - 10.1016/j.crma.2012.09.003
LA  - en
ID  - CRMATH_2012__350_15-16_745_0
ER  - 
%0 Journal Article
%A Rossi, Carlo A.
%T The explicit equivalence between the standard and the logarithmic star product for Lie algebras, II
%J Comptes Rendus. Mathématique
%D 2012
%P 745-748
%V 350
%N 15-16
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2012.09.003/
%R 10.1016/j.crma.2012.09.003
%G en
%F CRMATH_2012__350_15-16_745_0
Rossi, Carlo A. The explicit equivalence between the standard and the logarithmic star product for Lie algebras, II. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 745-748. doi : 10.1016/j.crma.2012.09.003. http://www.numdam.org/articles/10.1016/j.crma.2012.09.003/

[1] Anton Alekseev, Johannes Löffler, Carlo A. Rossi, Charles Torossian, Stokesʼ Theorem in presence of poles and logarithmic singularities, 2012, in preparation.

[2] Anton Alekseev, Johannes Löffler, Carlo A. Rossi, Charles Torossian, The logarithmic formality quasi-isomorphism, 2012, in preparation.

[3] Calaque, Damien; Felder, Giovanni Deformation quantization with generators and relations, J. Algebra, Volume 337 (2011), pp. 1-12 | DOI

[4] Calaque, Damien; Felder, Giovanni; Ferrario, Andrea; Rossi, Carlo A. Bimodules and branes in deformation quantization, Compos. Math., Volume 147 (2011) no. 1, pp. 105-160 | DOI

[5] Cattaneo, Alberto S.; Felder, Giovanni Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math., Volume 208 (2007) no. 2, pp. 521-548 | DOI

[6] Cattaneo, Alberto S.; Rossi, Carlo A.; Torossian, Charles Biquantization of symmetric pairs and the quantum shift, 2011 | arXiv

[7] Kontsevich, Maxim Operads and motives in deformation quantization, Moshé Flato (1937–1998), Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 35-72 | DOI

[8] Kontsevich, Maxim Deformation quantization of Poisson manifolds, Lett. Math. Phys., Volume 66 (2003) no. 3, pp. 157-216

[9] Merkulov, Sergei Exotic automorphisms of the Schouten algebra of polyvector fields, 2008 | arXiv

[10] Rossi, Carlo A. The explicit equivalence between the standard and the logarithmic star product for Lie algebras, I, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 13–14, pp. 661-664 | DOI

[11] Shoikhet, Boris Kontsevich formality and PBW algebras, 2007 | arXiv

[12] Willwacher, Thomas A counterexample to the quantizability of modules, Lett. Math. Phys., Volume 81 (2007) no. 3, pp. 265-280

[13] Willwacher, Thomas M. Kontsevichʼs graph complex and the Grothendieck–Teichmüller Lie algebra, 2010 | arXiv

Cited by Sources: