Complex Analysis
Optimal constant problem in the L2 extension theorem
Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 753-756.

In this Note, we solve the optimal constant problem in the L2-extension theorem with negligible weight on Stein manifolds. As an application, we prove the Suita conjecture on arbitrary open Riemann surfaces.

Dans cette Note, nous résolvons le problème de la détermination de la constante optimale dans le théorème dʼextension L2 avec poids négligeable sur les variétés de Stein. En application, nous prouvons la conjecture de Suita sur des surfaces de Riemann arbitraires.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.08.007
Guan, Qiʼan 1; Zhou, Xiangyu 2

1 Beijing International Center for Mathematical Research, Peking University, Beijing, China
2 Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing, China
@article{CRMATH_2012__350_15-16_753_0,
     author = {Guan, Qi'an and Zhou, Xiangyu},
     title = {Optimal constant problem in the $ {L}^{2}$ extension theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {753--756},
     publisher = {Elsevier},
     volume = {350},
     number = {15-16},
     year = {2012},
     doi = {10.1016/j.crma.2012.08.007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2012.08.007/}
}
TY  - JOUR
AU  - Guan, Qiʼan
AU  - Zhou, Xiangyu
TI  - Optimal constant problem in the $ {L}^{2}$ extension theorem
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 753
EP  - 756
VL  - 350
IS  - 15-16
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2012.08.007/
DO  - 10.1016/j.crma.2012.08.007
LA  - en
ID  - CRMATH_2012__350_15-16_753_0
ER  - 
%0 Journal Article
%A Guan, Qiʼan
%A Zhou, Xiangyu
%T Optimal constant problem in the $ {L}^{2}$ extension theorem
%J Comptes Rendus. Mathématique
%D 2012
%P 753-756
%V 350
%N 15-16
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2012.08.007/
%R 10.1016/j.crma.2012.08.007
%G en
%F CRMATH_2012__350_15-16_753_0
Guan, Qiʼan; Zhou, Xiangyu. Optimal constant problem in the $ {L}^{2}$ extension theorem. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 753-756. doi : 10.1016/j.crma.2012.08.007. http://www.numdam.org/articles/10.1016/j.crma.2012.08.007/

[1] Berndtsson, B. The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. LʼInst. Fourier (Grenoble), Volume 46 (1996) no. 4, pp. 1083-1094

[2] Z. Blocki, On the Ohsawa–Takegoshi extension theorem, preprint, 2012.

[3] Z. Blocki, Suita conjecture and the Ohsawa–Takegoshi extension theorem, preprint, 2012.

[4] Cao, J.; Shaw, M.-C.; Wang, L. Estimates for the ¯-Neumann problem and nonexistence of C2 Levi-flat hypersurfaces in CPn, Math. Z., Volume 248 (2004), pp. 183-221

[5] Chen, B. A remark on an extension theorem of Ohsawa, Chin. Ann. Math., Ser. A, Volume 24 (2003), pp. 129-134 (in Chinese)

[6] Chen, S.-C.; Shaw, M.-C. Partial Differential Equations in Several Complex Variables, AMS/IP, 2001

[7] Demailly, J.-P. On the Ohsawa–Takegoshi–Manivel L2 extension theorem, September 1997, Paris (Progress in Mathematics) (2000)

[8] Demailly, J.-P. Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html

[9] Demailly, J.-P. Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010

[10] Guan, Q.A.; Zhou, X.Y.; Zhu, L.F. On the Ohsawa–Takegoshi L2 extension theorem and the twisted Bochner–Kodaira identity, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 797-800

[11] Manivel, L. Un théorème de prolongement L2 de sections holomorphes dʼun fibré vectoriel, Math. Zeitschrift, Volume 212 (1993), pp. 107-122

[12] McNeal, J. On large values of L2 holomorphic functions, Math. Res. Lett., Volume 3 (1996) no. 2, pp. 247-259

[13] McNeal, J.; Varolin, D. Analytic inversion of adjunction: L2 extension theorems with gain, Ann. LʼInst. Fourier (Grenoble), Volume 57 (2007) no. 3, pp. 703-718

[14] Ohsawa, T. On the extension of L2 holomorphic functions. III. Negligible weights, Math. Z., Volume 219 (1995) no. 2, pp. 215-225

[15] Ohsawa, T. Addendum to “On the Bergman kernel of hyperconvex domains”, Nagoya Math. J., Volume 137 (1995), pp. 145-148

[16] Ohsawa, T.; Takegoshi, K. On the extension of L2 holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204

[17] Siu, Y.-T. Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geometry, Volume 17 (1982), pp. 55-138

[18] Siu, Y.-T. The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi, Hayama, World Scientific (1996), pp. 577-592

[19] Siu, Y.-T. Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Göttingen, 2000, Springer, Berlin (2002), pp. 223-277

[20] Suita, N. Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217

[21] Straube, E. Lectures on the L2-Sobolev Theory of the ¯-Neumann Problem, ESI Lectures in Mathematics and Physics, European Mathematical Society, Zürich, 2010

[22] Zhu, L.F.; Guan, Q.A.; Zhou, X.Y. On the Ohsawa–Takegoshi L2 extension theorem and the twisted Bochner–Kodaira identity with a non-smooth twist factor, J. Math. Pures Appl., Volume 97 (2012) no. 6, pp. 579-601

Cited by Sources: