Dynamical Systems
Combinatorics and topology of the Robinson tiling
[Combinatoire et topologie des pavages de Robinson]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 11-12, pp. 627-631.

Nous étudions lʼespace de tous les pavages qui peuvent sʼobtenir à partir des tuiles de Robinson (il sʼagit dʼun sous-décalage de type fini). Cet espace contient un unique sous-espace minimal, que nous décrivons par le biais dʼune substitution. En conséquence, il est possible de calculer les groupes de cohomologie associés, et de montrer quʼil sʼagit dʼun pavage de coupe et projection. Cet article a une annexe qui a été transmise à lʼAcadémie des Sciences.

We study the space of all tilings which can be obtained using the Robinson tiles (this is a two-dimensional subshift of finite type). We prove that it has a unique minimal subshift, and describe it by means of a substitution. This description allows to compute its cohomology groups, and prove that it is a model set. This article has an annex which was transmitted to the Académie des Sciences.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.06.007
Gähler, Franz 1 ; Julien, Antoine 2 ; Savinien, Jean 3

1 Faculty of Mathematics, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
2 Department of Mathematics and Statistics, University of Victoria, 3800 Finnerty Road, V8P 5C2 Victoria, BC, Canada
3 Département de Mathématiques, Université de Metz, Ile du Saulcy, 57045 Metz cedex 1, France
@article{CRMATH_2012__350_11-12_627_0,
     author = {G\"ahler, Franz and Julien, Antoine and Savinien, Jean},
     title = {Combinatorics and topology of the {Robinson} tiling},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {627--631},
     publisher = {Elsevier},
     volume = {350},
     number = {11-12},
     year = {2012},
     doi = {10.1016/j.crma.2012.06.007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2012.06.007/}
}
TY  - JOUR
AU  - Gähler, Franz
AU  - Julien, Antoine
AU  - Savinien, Jean
TI  - Combinatorics and topology of the Robinson tiling
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 627
EP  - 631
VL  - 350
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2012.06.007/
DO  - 10.1016/j.crma.2012.06.007
LA  - en
ID  - CRMATH_2012__350_11-12_627_0
ER  - 
%0 Journal Article
%A Gähler, Franz
%A Julien, Antoine
%A Savinien, Jean
%T Combinatorics and topology of the Robinson tiling
%J Comptes Rendus. Mathématique
%D 2012
%P 627-631
%V 350
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2012.06.007/
%R 10.1016/j.crma.2012.06.007
%G en
%F CRMATH_2012__350_11-12_627_0
Gähler, Franz; Julien, Antoine; Savinien, Jean. Combinatorics and topology of the Robinson tiling. Comptes Rendus. Mathématique, Tome 350 (2012) no. 11-12, pp. 627-631. doi : 10.1016/j.crma.2012.06.007. http://www.numdam.org/articles/10.1016/j.crma.2012.06.007/

[1] Anderson, J.E.; Putnam, I.F. Topological invariants for substitution tilings and their associated C-algebras, Ergodic Theory Dynam. Systems, Volume 18 (1998), pp. 509-537

[2] Baake, M.; Schlottmann, M.; Jarvis, P.D. Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability, J. Phys. A: Math. Gen., Volume 24 (1991), pp. 4637-4654

[3] Johnson, A.; Madden, K. Putting the pieces together: understanding Robinsonʼs nonperiodic tilings, College Math. J., Volume 28 (1997), pp. 172-181

[4] Lee, J.-Y.; Moody, R.V. Lattice substitution systems and model sets, Discrete Comput. Geom., Volume 25 (2001) no. 2, pp. 173-201

[5] Robinson, R. Undecidability and nonperiodicity for tilings of the plane, Invent. Math., Volume 12 (1971), pp. 177-209

Cité par Sources :