Number Theory/Algebraic Geometry
On uniform boundedness of a rational distance set in the plane
[Sur une borne uniforme dʼun ensemble de distances rationelles sur un plan]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 121-124.

Un ensemble sur un plan est appelé rationnel si la distance entre tous ses points est rationnelle. Une question posée par Ulam en 1945 demande sʼil existe un ensemble rationnel et partout dense sur un plan. Solymosi et de Zeeuw ont démontré que lʼintersection de toute courbe algébrique irréductible définie sur R avec tout ensemble rationnel sur un plan est un ensemble fini sauf si la courbe est une ligne droite ou un cercle. Comme application de la conjecture dʼuniformité en géométrie arithmétique, une conséquence de la conjecture de Lang, nous démontrons que si S est un ensemble rationnel et infini sur un plan dont lʼintersection avec toute ligne droite est un ensemble fini alors il existe une borne uniforme sur le cardinal de ces ensembles dʼintersection.

A rational set in the plane is a point set with all its pairwise distances rational. Ulam asked in 1945 if there is an everywhere dense rational set. Solymosi and de Zeeuw proved that every rational distance subset of the plane has only finitely many points in common with an irreducible algebraic curve defined over R unless the curve is a line or circle. As an application of uniformity conjecture in arithmetic algebraic geometry which is a consequence of Lang conjecture we prove that if S is an infinite rational distance subset of the plane that has only finitely many points on any line then there is a uniform bound (independent of S) on the number of these points.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.01.010
Makhul, Mehdi 1 ; Shaffaf, Jafar 1

1 Department of Mathematical Sciences, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran, Iran
@article{CRMATH_2012__350_3-4_121_0,
     author = {Makhul, Mehdi and Shaffaf, Jafar},
     title = {On uniform boundedness of a rational distance set in the plane},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {121--124},
     publisher = {Elsevier},
     volume = {350},
     number = {3-4},
     year = {2012},
     doi = {10.1016/j.crma.2012.01.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2012.01.010/}
}
TY  - JOUR
AU  - Makhul, Mehdi
AU  - Shaffaf, Jafar
TI  - On uniform boundedness of a rational distance set in the plane
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 121
EP  - 124
VL  - 350
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2012.01.010/
DO  - 10.1016/j.crma.2012.01.010
LA  - en
ID  - CRMATH_2012__350_3-4_121_0
ER  - 
%0 Journal Article
%A Makhul, Mehdi
%A Shaffaf, Jafar
%T On uniform boundedness of a rational distance set in the plane
%J Comptes Rendus. Mathématique
%D 2012
%P 121-124
%V 350
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2012.01.010/
%R 10.1016/j.crma.2012.01.010
%G en
%F CRMATH_2012__350_3-4_121_0
Makhul, Mehdi; Shaffaf, Jafar. On uniform boundedness of a rational distance set in the plane. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 121-124. doi : 10.1016/j.crma.2012.01.010. http://www.numdam.org/articles/10.1016/j.crma.2012.01.010/

[1] Anning, N.H.; Erdős, P. Integral distances, Bull. Amer. Math. Soc., Volume 51 (1945), pp. 598-600

[2] Brass, P.; Moser, W.; Pach, J. Research Problems in Discrete Geometry, Springer, Berlin, 2005 (XII, 499 p)

[3] Campbell, G. Points on y=x2 at rational distance, Math. Comp., Volume 73 (2004), pp. 2093-2108

[4] Caporaso, L. Counting rational points on algebraic curves, Rome, 1995 (Rend. Semin. Mat. Univ. Politec. Torino), Volume vol. 53 (1995), pp. 223-229 MR1452380 (98i:11041)

[5] Caporaso, L.; Harris, J.; Mazur, B. How many rational points can a curve have?, Texel Island, 1994 (Progr. Math.), Volume vol. 129, Birkhäuser Boston, MA (1995), pp. 13-31 MR1363052 (97d:11099)

[6] Caporaso, L.; Harris, J.; Mazur, B. Uniformity of rational points, J. Amer. Math. Soc., Volume 10 (1997), pp. 1-35

[7] Choudhry, A. Points at rational distances on a parabola, Rocky Mountain J. Math., Volume 36 (2006) no. 2, pp. 413-424

[8] Erdős, P. Some combinatorial and metric problems in geometry, Siófok (Colloq. Math. Soc. János Bolyai), Volume 48 (1985), pp. 167-177

[9] Guy, R. Unsolved Problems in Number Theory, Problem Books in Mathematics Subseries: Unsolved Problems in Intuitive Mathematics, vol. 1, Springer, 2004 (XVIII, 438 p)

[10] A. Kemnitz, Punktmengen mit ganzzahligen Abständen, Habilitationsschrift, TU Braunschweig, 1988.

[11] Kreisel, T.; Kurz, S. There are integral heptagons, no three points on a line, no four on a circle, Discrete Comput. Geom., Volume 39 (2008) no. 4, pp. 786-790

[12] Solymosi, J. Note on integral distances, Discrete Comput. Geom., Volume 30 (2003) no. 2, pp. 337-342

[13] Solymosi, J.; de Zeeuw, F. On a question of Erdős and Ulam, Discrete Comput. Geom., Volume 43 (2010) no. 2, pp. 393-401

[14] Ulam, S.M. A Collection of Mathematical Problems, Interscience Tracts in Pure and Appl. Math., vol. 8, Interscience Publishers, 1960 (XIII, 150 p)

Cité par Sources :