Partial Differential Equations
An extension of the identity Det=det
[Une extension de l'identité Det=det]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 17-18, pp. 973-976.

Dans cette Note on étudie la caractérisation ponctuelle du jacobien des applications BnV au sens des distributions. On étend un résultat bien connu de Müller à une classe plus naturelle de fonctions, en utilisant le théorème de la divergence pour écrire le jacobien comme une intégrale de contour.

In this Note we study the pointwise characterization of the distributional Jacobian of BnV maps. After recalling some basic notions, we will extend the well-known result of Müller to a more natural class of functions, using the divergence theorem to express the Jacobian as a boundary integral.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.019
De Lellis, Camillo 1 ; Ghiraldin, Francesco 2

1 Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
2 Scuola Normale Superiore, P.zza dei Cavalieri, 7, 56126 Pisa, Italy
@article{CRMATH_2010__348_17-18_973_0,
     author = {De Lellis, Camillo and Ghiraldin, Francesco},
     title = {An extension of the identity $ \mathbf{Det}=\mathbf{det}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {973--976},
     publisher = {Elsevier},
     volume = {348},
     number = {17-18},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.07.019/}
}
TY  - JOUR
AU  - De Lellis, Camillo
AU  - Ghiraldin, Francesco
TI  - An extension of the identity $ \mathbf{Det}=\mathbf{det}$
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 973
EP  - 976
VL  - 348
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.07.019/
DO  - 10.1016/j.crma.2010.07.019
LA  - en
ID  - CRMATH_2010__348_17-18_973_0
ER  - 
%0 Journal Article
%A De Lellis, Camillo
%A Ghiraldin, Francesco
%T An extension of the identity $ \mathbf{Det}=\mathbf{det}$
%J Comptes Rendus. Mathématique
%D 2010
%P 973-976
%V 348
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.07.019/
%R 10.1016/j.crma.2010.07.019
%G en
%F CRMATH_2010__348_17-18_973_0
De Lellis, Camillo; Ghiraldin, Francesco. An extension of the identity $ \mathbf{Det}=\mathbf{det}$. Comptes Rendus. Mathématique, Tome 348 (2010) no. 17-18, pp. 973-976. doi : 10.1016/j.crma.2010.07.019. http://www.numdam.org/articles/10.1016/j.crma.2010.07.019/

[1] Alberti, G.; Baldo, S.; Orlandi, G. Variational convergence for functionals of Ginzburg–Landau type, Indiana Univ. Math. J., Volume 54 (2005) no. 5, pp. 1411-1472

[2] Ball, J.M. Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1976/77) no. 4, pp. 337-403

[3] Coifman, R.; Lions, P.-L.; Meyer, Y.; Semmes, S. Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), Volume 72 (1993) no. 3, pp. 247-286

[4] Conti, S.; De Lellis, C. Some remarks on the theory of elasticity for compressible Neohookean materials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 2 (2003) no. 3, pp. 521-549

[5] De Lellis, C. Some fine properties of currents and applications to distributional Jacobians, Proc. Roy. Soc. Edinburgh Sect. A, Volume 132 (2002) no. 4, pp. 815-842

[6] De Lellis, C. Some remarks on the distributional Jacobian, Nonlinear Anal., Volume 53 (2003) no. 7–8, pp. 1101-1114

[7] Evans, L.C.; Gariepy, R.F. Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992

[8] Federer, H. Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969

[9] Giaquinta, M.; Modica, G.; Souček, J. Cartesian Currents in the Calculus of Variations. I, II, Ergeb. Math. Grenzgeb. (3), vols. 37, 38, Springer-Verlag, Berlin, 1998

[10] Goldberg, D. A local version of real Hardy spaces, Duke Math. J., Volume 46 (1979) no. 1, pp. 27-42

[11] D. Henao, Variational modelling of cavitation and fracture in nonlinear elasticity, PhD thesis, Oxford, 2009.

[12] Jerrard, R.L.; Soner, H.M. Functions of bounded higher variation, Indiana Univ. Math. J., Volume 51 (2002) no. 3, pp. 645-677

[13] Mora-Corral, C.; Henao, D. Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 197 (2010) no. 2, pp. 619-655

[14] Müller, S. Det=det. A remark on the distributional determinant, C. R. Acad. Sci. Paris Sér. I Math., Volume 311 (1990) no. 1, pp. 13-17

[15] Müller, S.; Spector, S.J. An existence theory for nonlinear elasticity that allows for cavitation, Arch. Ration. Mech. Anal., Volume 131 (1995) no. 1, pp. 1-66

[16] Stein, E.M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., vol. 43, Princeton Univ. Press, Princeton, NJ, 1993

[17] Šverák, V. Regularity properties of deformations with finite energy, Arch. Ration. Mech. Anal., Volume 100 (1988) no. 2, pp. 105-127

Cité par Sources :