We prove existence, regularity and a Feynman–Kač representation formula of the strong solution to the free boundary problem arising in the financial problem of the pricing of the American Asian option with arithmetic average.
On démontre l'existence, la régularité et une formule de représentation de Feynman–Kač de la solution forte d'un problème avec frontière libre. Ce type de problème on le retrouve en finance pour évaluer le prix d'une option asiatique à moyenne arithmétique de style américain.
Accepted:
Published online:
@article{CRMATH_2009__347_23-24_1443_0, author = {Monti, Laura and Pascucci, Andrea}, title = {Obstacle problem for {Arithmetic} {Asian} options}, journal = {Comptes Rendus. Math\'ematique}, pages = {1443--1446}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.019}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.019/} }
TY - JOUR AU - Monti, Laura AU - Pascucci, Andrea TI - Obstacle problem for Arithmetic Asian options JO - Comptes Rendus. Mathématique PY - 2009 SP - 1443 EP - 1446 VL - 347 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.10.019/ DO - 10.1016/j.crma.2009.10.019 LA - en ID - CRMATH_2009__347_23-24_1443_0 ER -
%0 Journal Article %A Monti, Laura %A Pascucci, Andrea %T Obstacle problem for Arithmetic Asian options %J Comptes Rendus. Mathématique %D 2009 %P 1443-1446 %V 347 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.10.019/ %R 10.1016/j.crma.2009.10.019 %G en %F CRMATH_2009__347_23-24_1443_0
Monti, Laura; Pascucci, Andrea. Obstacle problem for Arithmetic Asian options. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1443-1446. doi : 10.1016/j.crma.2009.10.019. http://www.numdam.org/articles/10.1016/j.crma.2009.10.019/
[1] Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 475-497
[2] Optimal redeeming strategy of stock loans, 2009 | arXiv
[3] On a class of degenerate parabolic equations of Kolmogorov type, AMRX Appl. Math. Res. Express (2005), pp. 77-116
[4] The obstacle problem for a class of hypoelliptic ultraparabolic equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 464 (2008), pp. 155-176
[5] M. Frentz, K. Nyström, A. Pascucci, S. Polidoro, Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options, Math. Ann. (2009), in press
[6] Stochastic Differential Equations and Applications, vol. 2., Probability and Mathematical Statistics, vol. 28, Academic Press, 1976
[7] A variational inequality approach to financial valuation of retirement benefits based on salary, Finance Stoch., Volume 6 (2002), pp. 273-302
[8] Theory of Financial Decision Making, Blackwell, Oxford, 1987
[9] On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, Volume 52 (1994), pp. 29-63 Partial differential equations, II (Turin, 1993)
[10] K. Nyström, A. Pascucci, S. Polidoro, Regularity near the initial state in the obstacle problem for a class of hypoelliptic ultraparabolic operators, 2009, submitted for publication
[11] Free boundary and optimal stopping problems for American Asian options, Finance Stoch., Volume 12 (2008), pp. 21-41
[12] Optimal Stopping and Free-Boundary Problems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2006
[13] The value of an Asian option, J. Appl. Probab., Volume 32 (1995), pp. 1077-1088
Cited by Sources: