Number Theory
Parametrization of Abelian K-surfaces with quaternionic multiplication
Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1325-1330.

We prove that the Abelian K-surfaces whose endomorphism algebra is a rational quaternion algebra are parametrized, up to isogeny, by the K-rational points of the quotient of certain Shimura curves by the group of their Atkin–Lehner involutions.

Nous démontrons que les K-surfaces abéliennes dont l'algèbre d'endomorphismes est une algèbre de quaternions sont paramétrisées, à isogénie près, par les points K-rationnels du quotient de certaines courbes de Shimura par le groupe de leurs involutions d'Atkin–Lehner.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.09.025
Guitart, Xavier 1; Molina, Santiago 2

1 Departament de Matemàtica aplicada II, Universitat Politècnica de Catalunya, Jordi Girona 1-3 (Edifici Omega), 08034 Barcelona, Spain
2 Departament de Matemàtica aplicada IV, Universitat Politècnica de Catalunya, Av. Víctor Balaguer, s/n. 08800 Vilanova i la Geltrú, Spain
@article{CRMATH_2009__347_23-24_1325_0,
     author = {Guitart, Xavier and Molina, Santiago},
     title = {Parametrization of {Abelian} {\protect\emph{K}-surfaces} with quaternionic multiplication},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1325--1330},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.025},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.09.025/}
}
TY  - JOUR
AU  - Guitart, Xavier
AU  - Molina, Santiago
TI  - Parametrization of Abelian K-surfaces with quaternionic multiplication
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1325
EP  - 1330
VL  - 347
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.09.025/
DO  - 10.1016/j.crma.2009.09.025
LA  - en
ID  - CRMATH_2009__347_23-24_1325_0
ER  - 
%0 Journal Article
%A Guitart, Xavier
%A Molina, Santiago
%T Parametrization of Abelian K-surfaces with quaternionic multiplication
%J Comptes Rendus. Mathématique
%D 2009
%P 1325-1330
%V 347
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.09.025/
%R 10.1016/j.crma.2009.09.025
%G en
%F CRMATH_2009__347_23-24_1325_0
Guitart, Xavier; Molina, Santiago. Parametrization of Abelian K-surfaces with quaternionic multiplication. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1325-1330. doi : 10.1016/j.crma.2009.09.025. http://www.numdam.org/articles/10.1016/j.crma.2009.09.025/

[1] Bertolini, M.; Darmon, H. Hegner points on Mumford–Tate curves, Invent. Math., Volume 126 (1996), pp. 413-456

[2] P. Clark, Rational Points on Atkin–Lehner quotients of Shimura curves, Harvard PhD thesis, 2003

[3] Elkies, N.D. On elliptic K-curves (Cremona, J.; Lario, J.-C.; Quer, J.; Ribet, K., eds.), Modular Curves and Abelian Varieties, Progr. Math., vol. 224, Birkhäuser Verlag, Basel, 2004, pp. 81-91

[4] Pyle, E. Abelian varieties over Q with large endomorphism algebras and their simple components over Q¯ (Cremona, J.; Lario, J.-C.; Quer, J.; Ribet, K., eds.), Modular Curves and Abelian Varieties, Progr. Math., vol. 224, Birkhäuser Verlag, Basel, 2004, pp. 189-239

[5] Ribet, K.A. Abelian varieties over Q and modular forms (Cremona, J.; Lario, J.-C.; Quer, J.; Ribet, K., eds.), Modular Curves and Abelian Varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 241-261

[6] Serre, J.-P. Sur les représentations modulaires de degré 2 de Gal(Q¯/Q), Duke Math. J., Volume 54 (1987) no. 1, pp. 179-230

[7] Serre, J.-P. Trees, Springer-Verlag, Berlin–New York, 1980 (ix+142 pp) (ISBN: 3-540-10103-9)

Cited by Sources: