Following a recent paper (Tolsa and Ruiz de Villa, 2008) we show that the finiteness of square function associated with the Riesz transforms with respect to Hausdorff measure implies that s is integer.
On peut modifier l'article recent (Tolsa and Ruiz de Villa, 2008) pour démontrer que la convergence de la fonction carrée associée aux transformations de Riesz de mesure de Hausdorff implique que s est un nombre entier.
Accepted:
Published online:
@article{CRMATH_2009__347_21-22_1271_0, author = {Mayboroda, Svitlana and Volberg, Alexander}, title = {Finite square function implies integer dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {1271--1276}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.09.020/} }
TY - JOUR AU - Mayboroda, Svitlana AU - Volberg, Alexander TI - Finite square function implies integer dimension JO - Comptes Rendus. Mathématique PY - 2009 SP - 1271 EP - 1276 VL - 347 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.09.020/ DO - 10.1016/j.crma.2009.09.020 LA - en ID - CRMATH_2009__347_21-22_1271_0 ER -
%0 Journal Article %A Mayboroda, Svitlana %A Volberg, Alexander %T Finite square function implies integer dimension %J Comptes Rendus. Mathématique %D 2009 %P 1271-1276 %V 347 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.09.020/ %R 10.1016/j.crma.2009.09.020 %G en %F CRMATH_2009__347_21-22_1271_0
Mayboroda, Svitlana; Volberg, Alexander. Finite square function implies integer dimension. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1271-1276. doi : 10.1016/j.crma.2009.09.020. http://www.numdam.org/articles/10.1016/j.crma.2009.09.020/
[1] Singular integrals and rectifiable sets in : Beyond Lipschitz graphs, Astérisque, Volume 193 (1991), p. 152
[2] Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, Providence, RI, 1993
[3] The Cauchy integral, analytic capacity, and uniform rectifiability, Ann. of Math. (2), Volume 144 (1996) no. 1, pp. 127-136
[4] Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices, Volume 9 (1998), pp. 463-487
[5] The Tb-theorem on non-homogeneous spaces, Acta Math., Volume 190 (2003) no. 2, pp. 151-239
[6] Potential theory of signed Riesz kernels: Capacity and Hausdorff measure, Internat. Math. Res. Notices, Volume 19 (2004), pp. 937-981
[7] L. Prat, Principal values for the signed Riesz kernels of non-integer dimensions, preprint, 2006, as cited in [10]
[8] Principal values for the Cauchy integral and rectifiability, Proc. Amer. Math. Soc., Volume 128 (2000) no. 7, pp. 2111-2119
[9] Xavier growth estimates for Cauchy integrals of measures and rectifiability, Geom. Funct. Anal., Volume 17 (2007) no. 2, pp. 605-643
[10] X. Tolsa, A. Ruiz de Villa, Non existence of principal values of signed Riesz transforms of non integer dimension, preprint, 2008
[11] The boundedness of Riesz s-transforms of measures in , Proc. Amer. Math. Soc., Volume 124 (1996) no. 12, pp. 3797-3804
[12] Calderón–Zygmund Capacities and Operators on Nonhomogeneous Spaces, CBMS Regional Conference Series in Mathematics, vol. 100, American Mathematical Society, Providence, RI, 2003 (published for the Conference Board of the Mathematical Sciences, Washington, DC)
Cited by Sources: