Let be the d-dimensional flat torus. We establish for uniform upper and lower bounds on the restrictions of the eigenfunctions of the Laplacian to smooth hyper-surfaces with non-vanishing curvature.
Soit le tore plat d-dimensionnel. Pour et , on établit des bornes supérieures et inférieures uniformes sur les restrictions des fonctions propres de l'opérateur de Laplace–Beltrami à des surfaces lisses de courbure non nulle.
Accepted:
Published online:
@article{CRMATH_2009__347_21-22_1249_0, author = {Bourgain, Jean and Rudnick, Ze\'ev}, title = {Restriction of toral eigenfunctions to hypersurfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1249--1253}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.08.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.08.008/} }
TY - JOUR AU - Bourgain, Jean AU - Rudnick, Zeév TI - Restriction of toral eigenfunctions to hypersurfaces JO - Comptes Rendus. Mathématique PY - 2009 SP - 1249 EP - 1253 VL - 347 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.08.008/ DO - 10.1016/j.crma.2009.08.008 LA - en ID - CRMATH_2009__347_21-22_1249_0 ER -
%0 Journal Article %A Bourgain, Jean %A Rudnick, Zeév %T Restriction of toral eigenfunctions to hypersurfaces %J Comptes Rendus. Mathématique %D 2009 %P 1249-1253 %V 347 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.08.008/ %R 10.1016/j.crma.2009.08.008 %G en %F CRMATH_2009__347_21-22_1249_0
Bourgain, Jean; Rudnick, Zeév. Restriction of toral eigenfunctions to hypersurfaces. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1249-1253. doi : 10.1016/j.crma.2009.08.008. http://www.numdam.org/articles/10.1016/j.crma.2009.08.008/
[1] Restrictions of the Laplace–Beltrami eigenfunctions to submanifolds, Duke Math. J., Volume 138 (2007) no. 3, pp. 445-486
[2] J. Bourgain, Z. Rudnick, P. Sarnak, in preparation
[3] Trigonometric polynomials and lattice points, Proc. Amer. Math. Soc., Volume 115 (1992) no. 4, pp. 899-905
[4] Lattice points on circles, squares in arithmetic progressions and sumsets of squares, Additive Combinatorics, CRM Proc. Lecture Notes, vol. 43, Amer. Math. Soc., Providence, RI, 2007, pp. 241-262
[5] Fourier transforms related to convex sets, Ann. of Math. (2), Volume 75 (1962), pp. 81-92
[6] R. Hu, norm estimates of eigenfunctions restricted to submanifolds, Forum Math., in press
[7] Über die Gitterpunkte auf konvexen Kurven, Math. Z., Volume 24 (1926) no. 1, pp. 500-518
[8] Letter to Reznikov, June 2008 http://www.math.princeton.edu/sarnak/ (see)
Cited by Sources: