A topological method, based on the fundamental properties of the Leray–Schauder degree, is used in proving the existence of a week solution in to Dirichlet problem
On utilise une méthode topologique, basée sur les propriétés fondamentales du degré de Leray–Schauder, afin de démontrer l'existence d'une solution faible dans pour le problème de Dirichlet . Cette méthode représente une adaptation de celle utilisée par Dinca et al. [G. Dinca, P. Jebelean, Une méthode de point fixe pour le p-laplacien, C. R. Acad. Sci. Paris, Ser. I 324 (1997) 165–168. [1], G. Dinca, P. Jebelean, J. Mawhin, Variational and topological methods for Dirichlet problems with p-Laplacian, Portugal. Math. 53 (3) (2001) 339–377. [2]] pour le p-laplacien classique ().
Accepted:
Published online:
@article{CRMATH_2009__347_13-14_757_0, author = {Dinca, George}, title = {A fixed point method for the $ p(\cdot )${-Laplacian}}, journal = {Comptes Rendus. Math\'ematique}, pages = {757--762}, publisher = {Elsevier}, volume = {347}, number = {13-14}, year = {2009}, doi = {10.1016/j.crma.2009.04.022}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.04.022/} }
TY - JOUR AU - Dinca, George TI - A fixed point method for the $ p(\cdot )$-Laplacian JO - Comptes Rendus. Mathématique PY - 2009 SP - 757 EP - 762 VL - 347 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.04.022/ DO - 10.1016/j.crma.2009.04.022 LA - en ID - CRMATH_2009__347_13-14_757_0 ER -
Dinca, George. A fixed point method for the $ p(\cdot )$-Laplacian. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 757-762. doi : 10.1016/j.crma.2009.04.022. http://www.numdam.org/articles/10.1016/j.crma.2009.04.022/
[1] Une méthode de point fixe pour le p-laplacien, C. R. Acad. Sci. Paris, Ser. I, Volume 324 (1997), pp. 165-168
[2] Variational and topological methods for Dirichlet problems with p-Laplacian, Portugal. Math., Volume 53 (2001) no. 3, pp. 339-377
[3] Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl., Volume 339 (2008), pp. 1395-1412
[4] Existence of solutions for -Laplacian Dirichlet problem, Nonlinear Anal., Volume 52 (2003), pp. 1843-1852
[5] On the spaces and , J. Math. Anal. Appl., Volume 263 (2001), pp. 424-446
[6] The problems of separability, duality, reflexivity and comparison for generalized Orlicz–Sobolev spaces , Comment. Math., Volume XXI (1979), pp. 315-324
Cited by Sources: