Statistics
A strong consistency of a nonparametric estimate of entropy under random censorship
Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 821-826.

The purpose of this Note is to provide the rate of strong consistency for a nonparametric estimator of entropy under random censorship. We also establish an uniform-in-bandwidth consistency for this estimator.

Dans cette Note, nous obtenons la consistance forte pour un estimateur non paramétrique de l'entropie en présence de données censurées. Nous montrons que ce résultat demeure valable uniformément en terme de la fenêtre.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.04.021
Bouzebda, Salim 1; Elhattab, Issam 1

1 L.S.T.A., Université de Paris 6, 175, rue du Chevaleret, bâtiment A, 75013 Paris, France
@article{CRMATH_2009__347_13-14_821_0,
     author = {Bouzebda, Salim and Elhattab, Issam},
     title = {A strong consistency of a nonparametric estimate of entropy under random censorship},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {821--826},
     publisher = {Elsevier},
     volume = {347},
     number = {13-14},
     year = {2009},
     doi = {10.1016/j.crma.2009.04.021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.04.021/}
}
TY  - JOUR
AU  - Bouzebda, Salim
AU  - Elhattab, Issam
TI  - A strong consistency of a nonparametric estimate of entropy under random censorship
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 821
EP  - 826
VL  - 347
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.04.021/
DO  - 10.1016/j.crma.2009.04.021
LA  - en
ID  - CRMATH_2009__347_13-14_821_0
ER  - 
%0 Journal Article
%A Bouzebda, Salim
%A Elhattab, Issam
%T A strong consistency of a nonparametric estimate of entropy under random censorship
%J Comptes Rendus. Mathématique
%D 2009
%P 821-826
%V 347
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.04.021/
%R 10.1016/j.crma.2009.04.021
%G en
%F CRMATH_2009__347_13-14_821_0
Bouzebda, Salim; Elhattab, Issam. A strong consistency of a nonparametric estimate of entropy under random censorship. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 821-826. doi : 10.1016/j.crma.2009.04.021. http://www.numdam.org/articles/10.1016/j.crma.2009.04.021/

[1] Beirlant, J.; Dudewicz, E.J.; Györfi, L.; van der Meulen, E.C. Nonparametric entropy estimation: an overview, Int. J. Math. Stat. Sci., Volume 6 (1997) no. 1, pp. 17-39

[2] Carbonez, A.; Györfi, L.; van der Meulen, E.C. Nonparametric entropy estimation based on randomly censored data, Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform., Volume 20 (1991) no. 6, pp. 441-451

[3] Deheuvels, P.; Einmahl, J.H.J. On the strong limiting behavior of local functionals of empirical processes based upon censored data, Ann. Probab., Volume 24 (1996) no. 1, pp. 504-525

[4] Deheuvels, P.; Einmahl, J.H.J. Functional limit laws for the increments of Kaplan–Meier product-limit processes and applications, Ann. Probab., Volume 28 (2000) no. 3, pp. 1301-1335

[5] Diehl, S.; Stute, W. Kernel density and hazard function estimation in the presence of censoring, J. Multivariate Anal., Volume 25 (1988) no. 2, pp. 299-310

[6] Földes, A.; Rejtő, L. A LIL type result for the product limit estimator, Z. Wahrsch. Verw. Gebiete, Volume 56 (1981) no. 1, pp. 75-86

[7] Földes, A.; Rejtő, L.; Winter, B.B. Strong consistency properties of nonparametric estimators for randomly censored data. The product-limit estimator, estimation of density and failure rate, Transactions of the Eighth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Prague, 1978), vol. C, Reidel, Dordrecht, 1979, pp. 105-121

[8] Földes, A.; Rejtő, L.; Winter, B.B. Strong consistency properties of nonparametric estimators for randomly censored data. II. Estimation of density and failure rate, Period. Math. Hungar., Volume 12 (1981) no. 1, pp. 15-29

[9] Giné, E.; Mason, D.M. Uniform in bandwidth estimation of integral functionals of the density function, Scand. J. Statist., Volume 35 (2008) no. 4, pp. 739-761

[10] Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc., Volume 53 (1958), pp. 457-481

[11] Tanner, M.A.; Wong, W.H. The estimation of the hazard function from randomly censored data by the kernel method, Ann. Statist., Volume 11 (1983) no. 3, pp. 989-993

[12] V. Viallon, Processus empiriques, estimation non paramétrique et données censurées, Ph.D. thesis, Université Paris 6, 2006

[13] Watson, G.S.; Leadbetter, M.R. Hazard analysis. I, Biometrika, Volume 51 (1964), pp. 175-184

[14] Watson, G.S.; Leadbetter, M.R. Hazard analysis. II, Sankhyā Ser. A, Volume 26 (1964), pp. 101-116

[15] Winter, B.B. Nonparametric estimation with censored data from a distribution with nonincreasing density, Comm. Statist. Theory Methods, Volume 16 (1987) no. 1, pp. 93-120

Cited by Sources: