We give a classification of polycyclic groups of orientation-preserving -diffeomorphisms of the closed interval. This shows that many polycyclic groups of -diffeomorphisms of the half-open interval are not the restriction of groups of -diffeomorphisms of the closed interval.
On donne une classification des groupes polycycliques de difféomorphismes directs et de classe de l'intervalle fermé. Cela montre que il y a des groupes polycycliques de difféomorphsmes de classe de l'intervalle demi-ouvert qui ne sont pas des restrictions des groupes de difféomorphsmes de classe de l'intervalle fermée.
Accepted:
Published online:
@article{CRMATH_2009__347_13-14_813_0, author = {Matsuda, Yoshifumi}, title = {Polycyclic groups of diffeomorphisms of the closed interval}, journal = {Comptes Rendus. Math\'ematique}, pages = {813--816}, publisher = {Elsevier}, volume = {347}, number = {13-14}, year = {2009}, doi = {10.1016/j.crma.2009.04.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.04.008/} }
TY - JOUR AU - Matsuda, Yoshifumi TI - Polycyclic groups of diffeomorphisms of the closed interval JO - Comptes Rendus. Mathématique PY - 2009 SP - 813 EP - 816 VL - 347 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.04.008/ DO - 10.1016/j.crma.2009.04.008 LA - en ID - CRMATH_2009__347_13-14_813_0 ER -
%0 Journal Article %A Matsuda, Yoshifumi %T Polycyclic groups of diffeomorphisms of the closed interval %J Comptes Rendus. Mathématique %D 2009 %P 813-816 %V 347 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.04.008/ %R 10.1016/j.crma.2009.04.008 %G en %F CRMATH_2009__347_13-14_813_0
Matsuda, Yoshifumi. Polycyclic groups of diffeomorphisms of the closed interval. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 813-816. doi : 10.1016/j.crma.2009.04.008. http://www.numdam.org/articles/10.1016/j.crma.2009.04.008/
[1] Periodic leaves for diffeomorphisms preserving codimension one foliations, J. Math. Soc. Japan, Volume 55 (2003) no. 1, pp. 13-37
[2] Feuielletages. Études géometriques, Progress in Mathematics, vol. 98, Birkhäuser, 1991
[3] Commuting diffeomorphisms, Berkeley, CA, 1968 (Proc. Sympos. Pure Math.), Volume vol. 14, Amer. Math. Soc., Providence, RI (1970), pp. 165-184
[4] Y. Matsuda, Diffeomorphism groups of the interval and periodic leaves of codimension one foliations, in preparation
[5] Polycyclic groups of diffeomorphisms on the half-line, Hokkaido Math. J., Volume 23 (1994) no. 3, pp. 399-422
[6] Groupes résolubles de difféomorphismes de l'intervalle, du cercle et de la droite, Bull. Braz. Math. Soc. (N.S.), Volume 35 (2004) no. 1, pp. 13-50
[7] Quelques groupes moyennables de difféomorphismes de l'intervalle, Bol. Soc. Mat. Mexicana, Volume 10 (2004), pp. 219-244
[8] Solvable groups acting on the line, Trans. Amer. Math. Soc., Volume 278 (1983), pp. 401-414
[9] Subgroups of continuous groups acting differentiably on the half-line, Ann. Inst. Fourier (Grenoble), Volume 34 (1984) no. 1, pp. 47-56
[10] Polynomial growth in holonomy groups of foliations, Comment. Math. Helv., Volume 51 (1976) no. 4, pp. 567-584
[11] Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York–Heidelberg, 1972
[12] On the foliated products of class , Ann. of Math. (2), Volume 130 (1989) no. 2, pp. 227-271
[13] Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Diff. Geom., Volume 2 (1968), pp. 421-446
Cited by Sources: