We give a complete list of complex projective complete intersections admitting Riemannian metrics of positive scalar curvature.
Nous donnons la liste des variétés complexes projectives intersections complètes, qui admettent une métrique riemannienne à courbure scalaire positive.
Accepted:
Published online:
@article{CRMATH_2009__347_13-14_797_0, author = {Fang, Fuquan and Shao, Peng}, title = {Complete intersections with metrics of positive scalar curvature}, journal = {Comptes Rendus. Math\'ematique}, pages = {797--800}, publisher = {Elsevier}, volume = {347}, number = {13-14}, year = {2009}, doi = {10.1016/j.crma.2009.03.033}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.03.033/} }
TY - JOUR AU - Fang, Fuquan AU - Shao, Peng TI - Complete intersections with metrics of positive scalar curvature JO - Comptes Rendus. Mathématique PY - 2009 SP - 797 EP - 800 VL - 347 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.03.033/ DO - 10.1016/j.crma.2009.03.033 LA - en ID - CRMATH_2009__347_13-14_797_0 ER -
%0 Journal Article %A Fang, Fuquan %A Shao, Peng %T Complete intersections with metrics of positive scalar curvature %J Comptes Rendus. Mathématique %D 2009 %P 797-800 %V 347 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.03.033/ %R 10.1016/j.crma.2009.03.033 %G en %F CRMATH_2009__347_13-14_797_0
Fang, Fuquan; Shao, Peng. Complete intersections with metrics of positive scalar curvature. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 797-800. doi : 10.1016/j.crma.2009.03.033. http://www.numdam.org/articles/10.1016/j.crma.2009.03.033/
[1] Compact Complex Surfaces, Springer-Verlag, Berlin, 1984
[2] The -genus of complex hypersurfaces and complete intersections, Proc. Amer. Math. Soc., Volume 87 (1983), pp. 528-532
[3] Existence of Riemannian metrics with positive scalar curvature of complex complete intersections, Adv. Math. (China), Volume 36 (2007), pp. 47-50
[4] Spin and scalar curvature in the presence of a fundamental group. I, Ann. Math., Volume 111 (1980), pp. 209-230
[5] The classification of simply connected manifolds of positive scalar curvature, Ann. Math., Volume 111 (1980), pp. 423-434
[6] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math., Volume 58 (1983), pp. 83-196
[7] On the Chern numbers of surfaces of general type, Invent. Math., Volume 42 (1977), pp. 225-237
[8] The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton Press, 1996
[9] The structure of manifolds with positive scalar curvature, Manuscripta Math., Volume 28 (1979), pp. 159-183
[10] Simply connected manifolds of positive scalar curvature, Ann. Math., Volume 136 (1992), pp. 511-540
[11] The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett., Volume 1 (1994) no. 6, pp. 809-822
[12] Spinc-manifolds and Rokhlin congruences, C. R. Acad. Sci. Paris, Sér. I Math., Volume 317 (1993), pp. 689-692
[13] Existence of Riemannian metrics with positive scalar curvature on complex hypersurfaces, Acta Math. Sinica (Chin. Ser.), Volume 39 (1996) no. 4, pp. 460-462
Cited by Sources:
☆ Supported by NSF Grant of China #10671097 and the Capital Normal University.