Partial Differential Equations
Some inverse stability results for the bistable reaction–diffusion equation using Carleman inequalities
Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 619-622.

We consider the bistable equation vtΔv=f(v,x), f(v,x)=a(x)v(1v)(vα(x)) with homogeneous Neumann boundary conditions in a bounded domain ΩR3 with regular boundary. For this equation, we prove Lipschitz stability for the inverse problem of recovering parameters a and α from measurements of v in (0,T)×ω, where ω is an arbitrary nonempty open subset of Ω and measurements of v(t0) in the whole domain Ω at some positive time t0 such that 0<t0<T. The result is based in some suitable global Carleman estimate for the nonlinear problem.

Dans un domaine ΩR3 borné de frontière régulière, nous considérons l'équation bistable vtΔv=f(v,x), f(v,x)=a(x)v(1v)(vα(x)) complétée par des conditions de Neumann homogène au bord. Pour cette équation, nous prouvons un résultat de stabilité lipschitzienne pour le problème inverse qui consiste à identifier les paramètres a et α à partir de mesures de v sur (0,T)×ω, où ωΩ est un ouvert non vide quelconque et des mesures de v(t0) dans tout le domaine Ω avec t0 tel que 0<t0<T. Le résultat est basé sur une inegalité de Carleman globale pour le problème non linéaire.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.03.022
Boulakia, Muriel 1; Grandmont, Céline 2; Osses, Axel 3

1 Université Pierre et Marie Curie-Paris 6, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France
2 INRIA, Projet REO, Rocquencourt, BP 105, 78153 Le Chesnay cedex, France
3 Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS) FCFM, U. de Chile, Casilla 170/3, correo 3, Santiago, Chile
@article{CRMATH_2009__347_11-12_619_0,
     author = {Boulakia, Muriel and Grandmont, C\'eline and Osses, Axel},
     title = {Some inverse stability results for the bistable reaction{\textendash}diffusion equation using {Carleman} inequalities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {619--622},
     publisher = {Elsevier},
     volume = {347},
     number = {11-12},
     year = {2009},
     doi = {10.1016/j.crma.2009.03.022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.03.022/}
}
TY  - JOUR
AU  - Boulakia, Muriel
AU  - Grandmont, Céline
AU  - Osses, Axel
TI  - Some inverse stability results for the bistable reaction–diffusion equation using Carleman inequalities
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 619
EP  - 622
VL  - 347
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.03.022/
DO  - 10.1016/j.crma.2009.03.022
LA  - en
ID  - CRMATH_2009__347_11-12_619_0
ER  - 
%0 Journal Article
%A Boulakia, Muriel
%A Grandmont, Céline
%A Osses, Axel
%T Some inverse stability results for the bistable reaction–diffusion equation using Carleman inequalities
%J Comptes Rendus. Mathématique
%D 2009
%P 619-622
%V 347
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.03.022/
%R 10.1016/j.crma.2009.03.022
%G en
%F CRMATH_2009__347_11-12_619_0
Boulakia, Muriel; Grandmont, Céline; Osses, Axel. Some inverse stability results for the bistable reaction–diffusion equation using Carleman inequalities. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 619-622. doi : 10.1016/j.crma.2009.03.022. http://www.numdam.org/articles/10.1016/j.crma.2009.03.022/

[1] Bukhgeim, A.; Klibanov, M. Global uniqueness of a class of inverse problems, Sov. Math. Dokl., Volume 24 (1982), pp. 244-247

[2] Cantrell, R.S.; Cosner, C. Spatial Ecology via Reaction–Diffusion Equations, John Wiley & Sons, Sussex, 2003

[3] Hegger, H.; Engl, H.W.; Klibanov, M. Global uniqueness and Hölder stability for recovering a nonlinear source term in a parabolic equation, Inverse Problems, Volume 21 (2005), pp. 271-290

[4] Fernández-Cara, E.; Gonzáles-Burgos, M.; Guerrero, S.; Puel, J.P. Null controllability of the heat equation with boundary Fourier conditions: The linear case, ESAIM Control Optim. Calc. Var., Volume 12 (2006), pp. 442-465

[5] Fursikov, A.; Imanuvilov, O.Yu. Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Seoul, 1996

[6] Protter, M.H.; Weinberger, H.F. Maximum Principles in Differential Equations, Prentice–Hall, Englewood Cliffs, NJ, 1967

[7] Xin Front propagation in heterogeneous media, SIAM Rev., Volume 42 (2000) no. 2, pp. 161-230

Cited by Sources: