We consider the bistable equation , with homogeneous Neumann boundary conditions in a bounded domain with regular boundary. For this equation, we prove Lipschitz stability for the inverse problem of recovering parameters a and α from measurements of v in , where ω is an arbitrary nonempty open subset of Ω and measurements of in the whole domain Ω at some positive time such that . The result is based in some suitable global Carleman estimate for the nonlinear problem.
Dans un domaine borné de frontière régulière, nous considérons l'équation bistable , complétée par des conditions de Neumann homogène au bord. Pour cette équation, nous prouvons un résultat de stabilité lipschitzienne pour le problème inverse qui consiste à identifier les paramètres a et α à partir de mesures de v sur , où est un ouvert non vide quelconque et des mesures de dans tout le domaine Ω avec tel que . Le résultat est basé sur une inegalité de Carleman globale pour le problème non linéaire.
Accepted:
Published online:
@article{CRMATH_2009__347_11-12_619_0, author = {Boulakia, Muriel and Grandmont, C\'eline and Osses, Axel}, title = {Some inverse stability results for the bistable reaction{\textendash}diffusion equation using {Carleman} inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {619--622}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.03.022}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.03.022/} }
TY - JOUR AU - Boulakia, Muriel AU - Grandmont, Céline AU - Osses, Axel TI - Some inverse stability results for the bistable reaction–diffusion equation using Carleman inequalities JO - Comptes Rendus. Mathématique PY - 2009 SP - 619 EP - 622 VL - 347 IS - 11-12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.03.022/ DO - 10.1016/j.crma.2009.03.022 LA - en ID - CRMATH_2009__347_11-12_619_0 ER -
%0 Journal Article %A Boulakia, Muriel %A Grandmont, Céline %A Osses, Axel %T Some inverse stability results for the bistable reaction–diffusion equation using Carleman inequalities %J Comptes Rendus. Mathématique %D 2009 %P 619-622 %V 347 %N 11-12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.03.022/ %R 10.1016/j.crma.2009.03.022 %G en %F CRMATH_2009__347_11-12_619_0
Boulakia, Muriel; Grandmont, Céline; Osses, Axel. Some inverse stability results for the bistable reaction–diffusion equation using Carleman inequalities. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 619-622. doi : 10.1016/j.crma.2009.03.022. http://www.numdam.org/articles/10.1016/j.crma.2009.03.022/
[1] Global uniqueness of a class of inverse problems, Sov. Math. Dokl., Volume 24 (1982), pp. 244-247
[2] Spatial Ecology via Reaction–Diffusion Equations, John Wiley & Sons, Sussex, 2003
[3] Global uniqueness and Hölder stability for recovering a nonlinear source term in a parabolic equation, Inverse Problems, Volume 21 (2005), pp. 271-290
[4] Null controllability of the heat equation with boundary Fourier conditions: The linear case, ESAIM Control Optim. Calc. Var., Volume 12 (2006), pp. 442-465
[5] Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Seoul, 1996
[6] Maximum Principles in Differential Equations, Prentice–Hall, Englewood Cliffs, NJ, 1967
[7] Front propagation in heterogeneous media, SIAM Rev., Volume 42 (2000) no. 2, pp. 161-230
Cited by Sources: