Mathematical Problems in Mechanics
The pure displacement problem in nonlinear three-dimensional elasticity: intrinsic formulation and existence theorems
Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 677-683.

In this Note, the equations of nonlinear three-dimensional elasticity corresponding to the pure displacement problem are recast either as a boundary value problem, or as a minimization problem, where the unknown is in both cases the Cauchy–Green strain tensor, instead of the deformation as is customary. We then show that either problem possesses a solution if the applied forces are sufficiently small and the stored energy function satisfies specific hypotheses. The second problem provides an example of a minimization problem for a non-coercive functional over a Banach manifold.

Dans cette Note, les équations de l'élasticité non linéaire tri-dimensionnelle correspondant au problème en déplacement pur sont ré-écrites, soit comme un problème aux limites, soit comme un problème de minimisation, l'inconnue étant dans les deux cas le tenseur des déformations de Cauchy–Green, au lieu de la déformation comme il est usuel. On montre ensuite que l'un et l'autre problème ont au moins une solution si les forces sont suffisamment petites et si la densité d'énergie satisfait certaines hypothèses naturelles. Le second problème constitue un exemple de problème de minimisation d'une fonctionnelle non coercive sur une variété de Banach.

Accepted:
Published online:
DOI: 10.1016/j.crma.2009.03.020
Ciarlet, Philippe G. 1; Mardare, Cristinel 2

1 Department of Mathematics, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
2 Université Pierre et Marie Curie, Laboratoire Jacques-Louis Lions, 4, place Jussieu, 75005 Paris, France
@article{CRMATH_2009__347_11-12_677_0,
     author = {Ciarlet, Philippe G. and Mardare, Cristinel},
     title = {The pure displacement problem in nonlinear three-dimensional elasticity: intrinsic formulation and existence theorems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {677--683},
     publisher = {Elsevier},
     volume = {347},
     number = {11-12},
     year = {2009},
     doi = {10.1016/j.crma.2009.03.020},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.03.020/}
}
TY  - JOUR
AU  - Ciarlet, Philippe G.
AU  - Mardare, Cristinel
TI  - The pure displacement problem in nonlinear three-dimensional elasticity: intrinsic formulation and existence theorems
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 677
EP  - 683
VL  - 347
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.03.020/
DO  - 10.1016/j.crma.2009.03.020
LA  - en
ID  - CRMATH_2009__347_11-12_677_0
ER  - 
%0 Journal Article
%A Ciarlet, Philippe G.
%A Mardare, Cristinel
%T The pure displacement problem in nonlinear three-dimensional elasticity: intrinsic formulation and existence theorems
%J Comptes Rendus. Mathématique
%D 2009
%P 677-683
%V 347
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.03.020/
%R 10.1016/j.crma.2009.03.020
%G en
%F CRMATH_2009__347_11-12_677_0
Ciarlet, Philippe G.; Mardare, Cristinel. The pure displacement problem in nonlinear three-dimensional elasticity: intrinsic formulation and existence theorems. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 677-683. doi : 10.1016/j.crma.2009.03.020. http://www.numdam.org/articles/10.1016/j.crma.2009.03.020/

[1] Abraham, R.; Marsden, J.E.; Ratiu, T. Manifolds, Tensor Analysis, and Applications, Springer-Verlag, New York, 1988

[2] Antman, S.S. Ordinary differential equations of nonlinear elasticity I: Foundations of the theories of non-linearly elastic rods and shells, Arch. Ration. Mech. Anal., Volume 61 (1976), pp. 307-351

[3] Ball, J.M. Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1977), pp. 337-403

[4] Ball, J.M.; Murat, F. W1,p-Quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., Volume 58 (1984), pp. 225-253

[5] Ciarlet, P.G. Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988

[6] Ciarlet, P.G. Mathematical Elasticity, Volume III: Theory of Shells, North-Holland, Amsterdam, 2000

[7] Ciarlet, P.G.; Ciarlet, P. Jr. Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 259-271

[8] Ciarlet, P.G.; Geymonat, G. On constitutive equations in compressible nonlinear elasticity, C. R. Acad. Sci. Paris, Sér. II, Volume 295 (1982), pp. 423-426

[9] Ciarlet, P.G.; Mardare, C. Recovery of a manifold with boundary and its continuity as a function of its metric tensor, J. Math. Pures Appl., Volume 83 (2004), pp. 811-843

[10] P.G. Ciarlet, C. Mardare, Existence theorems in intrinsic nonlinear elasticity, in preparation

[11] P.G. Ciarlet, C. Mardare, The pure displacement problem in intrinsic linearized elasticity, in preparation

[12] Mardare, C. C-regularity of a manifold as a function of its metric tensor, Anal. Appl., Volume 4 (2006), pp. 19-30

[13] Mardare, S. On isometric immersions of a Riemannian space with little regularity, Anal. Appl., Volume 2 (2004), pp. 193-226

[14] Mardare, S. On Pfaff systems with Lp coefficients and their applications in differential geometry, J. Math. Pures Appl., Volume 84 (2005), pp. 1659-1692

[15] Mardare, S. On systems of first order linear partial differential equations with Lp coefficients, Adv. Differential Equations, Volume 12 (2007), pp. 301-360

[16] Zhang, K. Energy minimizers in nonlinear elastostatics and the implicit function theorem, Arch. Ration. Mech. Anal., Volume 114 (1991), pp. 95-117

Cited by Sources: