We prove that if and f is in the Hölder class , then for arbitrary selfadjoint operators A and B with bounded , the operator is bounded and . We prove a similar result for functions f of the Zygmund class : , where A and K are selfadjoint operators. Similar results also hold for all Hölder–Zygmund classes , . We also study properties of the operators for and selfadjoint operators A and B such that belongs to the Schatten–von Neumann class . We consider the same problem for higher order differences. Similar results also hold for unitary operators and for contractions.
Nous démontrons que si et f appartient à la classe de Hölder , alors pour tous les opérateurs A et B autoadjoints dont la différence est bornée on a : . Nous obtenons un résultat analogue pour les fonctions de la classe de Zygmund : , où A et K sont des opérateurs autoadjoints. Un résultat analogue est aussi vrai pour toutes les classes de Hölder–Zygmund , . Nous étudions aussi les propriétés des opérateurs si et A et B sont des opérateurs autoadjoints dont la différence appartient à la classe de Schatten–von Neumann . Nous considérons le même problème pour les différences d'ordre arbitraire. On peut obtenir des résultats analogues pour les opérateurs unitaires et pour les contractions.
Accepted:
Published online:
@article{CRMATH_2009__347_9-10_483_0, author = {Aleksandrov, Aleksei and Peller, Vladimir}, title = {Functions of perturbed operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--488}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.03.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.03.004/} }
TY - JOUR AU - Aleksandrov, Aleksei AU - Peller, Vladimir TI - Functions of perturbed operators JO - Comptes Rendus. Mathématique PY - 2009 SP - 483 EP - 488 VL - 347 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.03.004/ DO - 10.1016/j.crma.2009.03.004 LA - en ID - CRMATH_2009__347_9-10_483_0 ER -
%0 Journal Article %A Aleksandrov, Aleksei %A Peller, Vladimir %T Functions of perturbed operators %J Comptes Rendus. Mathématique %D 2009 %P 483-488 %V 347 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.03.004/ %R 10.1016/j.crma.2009.03.004 %G en %F CRMATH_2009__347_9-10_483_0
Aleksandrov, Aleksei; Peller, Vladimir. Functions of perturbed operators. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 483-488. doi : 10.1016/j.crma.2009.03.004. http://www.numdam.org/articles/10.1016/j.crma.2009.03.004/
[1] Double Stieltjes operator integrals, Problems of Math. Phys., Leningrad. Univ., Volume 1 (1966), pp. 33-67 (Russian). English transl.: Math. Topics Physics, 1, 1967, pp. 25-54 Consultants Bureau Plenum Publishing Corporation, New York
[2] Double Stieltjes operator integrals. II, Problems of Math. Phys., Leningrad. Univ., Volume 2 (1967), pp. 26-60 (Russian). English transl.: Math. Topics Physics, 2, 1968, pp. 19-46 Consultants Bureau Plenum Publishing Corporation, New York
[3] Double Stieltjes operator integrals. III, Problems of Math. Phys., Leningrad. Univ., Volume 6 (1973), pp. 27-53 (Russian)
[4] The connection of the Kantorovich–Rubinshtein metric for spectral resolutions of selfadjoint operators with functions of operators, Vestnik Leningrad. Univ., Volume 19 (1968), pp. 94-97 (Russian)
[5] An estimate of the norm of for selfadjoint operators A and B, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 56 (1976), pp. 143-162 (Russian)
[6] Modulus of continuity of operator functions, Algebra i Analiz, Volume 20 (2008) no. 3, pp. 224-242
[7] Continuity of the map for linear operators, Proc. Japan Acad., Volume 49 (1973), pp. 157-160
[8] Hankel operators in the theory of perturbations of unitary and self-adjoint operators, Funktsional. Anal. i Prilozhen., Volume 19 (1985) no. 2, pp. 37-51 (Russian). English transl.: Funct. Anal. Appl., 19, 1985, pp. 111-123
[9] Hankel operators in the perturbation theory of unbounded self-adjoint operators, Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 529-544
[10] Hankel Operators and Their Applications, Springer-Verlag, New York, 2003
[11] Multiple operator integrals and higher operator derivatives, J. Funct. Anal., Volume 233 (2006), pp. 515-544
Cited by Sources: