Hypercomplex structures on Courant algebroids unify holomorphic symplectic structures and usual hypercomplex structures. In this Note, we prove the equivalence of two characterizations of hypercomplex structures on Courant algebroids, one in terms of Nijenhuis concomitants and the other in terms of (almost) torsionfree connections for which each of the three complex structures is parallel.
Les structures hypercomplexes sur les algébroïdes de Courant unifient les structures symplectiques holomorphes et les structures hypercomplexes usuelles. Dans cette Note, nous prouvons l'équivalence de deux caractérisations des structures hypercomplexes sur les algébroïdes de Courant, l'une en termes de concomitants de Nijenhuis et l'autre en termes de connexions (presque) sans torsion pour lesquelles les trois structures complexes sont parallèles.
Accepted:
Published online:
@article{CRMATH_2009__347_9-10_545_0, author = {Sti\'enon, Mathieu}, title = {Hypercomplex structures on {Courant} algebroids}, journal = {Comptes Rendus. Math\'ematique}, pages = {545--550}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.02.020/} }
TY - JOUR AU - Stiénon, Mathieu TI - Hypercomplex structures on Courant algebroids JO - Comptes Rendus. Mathématique PY - 2009 SP - 545 EP - 550 VL - 347 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.02.020/ DO - 10.1016/j.crma.2009.02.020 LA - en ID - CRMATH_2009__347_9-10_545_0 ER -
Stiénon, Mathieu. Hypercomplex structures on Courant algebroids. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 545-550. doi : 10.1016/j.crma.2009.02.020. http://www.numdam.org/articles/10.1016/j.crma.2009.02.020/
[1] Generalized hyper-Kähler geometry and supersymmetry, Nuclear Phys. B, Volume 773 (2007) no. 3, pp. 172-183
[2] Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990) no. 2, pp. 631-661 MR MR998124 (90m:58065)
[3] Generalized hyperKähler manifolds in string theory, J. High Energy Phys. (4) (2007), p. 083 8 pp. (electronic)
[4] Manin triples for Lie bialgebroids, J. Differential Geom., Volume 45 (1997) no. 3, pp. 547-574 MR MR1472888 (98f:58203)
[5] Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Jap. J. Math., Volume 26 (1956), pp. 43-77 MR MR0095290 (20 #1796a)
[6] Integrability conditions for almost quaternion structures, Hokkaido Math. J., Volume 1 (1972), pp. 63-86 MR MR0353197 (50 #5682)
[7] An affine connection in an almost quaternion manifold, J. Differential Geometry, Volume 8 (1973), pp. 341-347 MR MR0355892 (50 #8366)
Cited by Sources: