We discuss bilinear embedding theorems for a certain class of Schrödinger operators on . The obtained estimates are dimension-free and linear in p. We outline a uniform proof of the theorem which relies on establishing three crucial properties of the concrete Bellman function we consider.
On considère un théorème de plongement bilinéaire pour une classe des opérateurs de Schrödinger sur . Le résultat ne depend pas de dimension et il est p-linéaire. On fait une esquisse de la démonstration basée sur trois observations concernant la fonction de Bellman spécifique.
Accepted:
Published online:
@article{CRMATH_2009__347_9-10_537_0, author = {Dragi\v{c}evi\'c, Oliver and Volberg, Alexander}, title = {Bellman function and bilinear embedding theorem for {Schr\"odinger-type} operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {537--540}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.02.004/} }
TY - JOUR AU - Dragičević, Oliver AU - Volberg, Alexander TI - Bellman function and bilinear embedding theorem for Schrödinger-type operators JO - Comptes Rendus. Mathématique PY - 2009 SP - 537 EP - 540 VL - 347 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.02.004/ DO - 10.1016/j.crma.2009.02.004 LA - en ID - CRMATH_2009__347_9-10_537_0 ER -
%0 Journal Article %A Dragičević, Oliver %A Volberg, Alexander %T Bellman function and bilinear embedding theorem for Schrödinger-type operators %J Comptes Rendus. Mathématique %D 2009 %P 537-540 %V 347 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.02.004/ %R 10.1016/j.crma.2009.02.004 %G en %F CRMATH_2009__347_9-10_537_0
Dragičević, Oliver; Volberg, Alexander. Bellman function and bilinear embedding theorem for Schrödinger-type operators. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 537-540. doi : 10.1016/j.crma.2009.02.004. http://www.numdam.org/articles/10.1016/j.crma.2009.02.004/
[1] Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 2004
[2] A. Carbonaro, Functional calculus for some perturbations of the Ornstein–Uhlenbeck operator, Math. Z., in press
[3] Bellman functions and dimensionless estimates of Littlewood–Paley type, J. Oper. Theory, Volume 56 (2006) no. 1, pp. 167-198
[4] Linear dimension-free estimates for the Hermite–Riesz transforms | arXiv
[5] Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995
[6] The Hunt for a Bellman function: applications to estimates of singular integral operators and to other classical problems in harmonic analysis, St. Petersburg Math. J., Volume 8 (1997) no. 5, pp. 721-824
[7] Kato's inequality and the comparison of semigroups, J. Funct. Anal., Volume 32 (1979) no. 1, pp. 97-101
Cited by Sources: