Harmonic Analysis/Functional Analysis
Bellman function and bilinear embedding theorem for Schrödinger-type operators
Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 537-540.

We discuss bilinear embedding theorems for a certain class of Schrödinger operators on Lp. The obtained estimates are dimension-free and linear in p. We outline a uniform proof of the theorem which relies on establishing three crucial properties of the concrete Bellman function we consider.

On considère un théorème de plongement bilinéaire pour une classe des opérateurs de Schrödinger sur Lp. Le résultat ne depend pas de dimension et il est p-linéaire. On fait une esquisse de la démonstration basée sur trois observations concernant la fonction de Bellman spécifique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.02.004
Dragičević, Oliver 1; Volberg, Alexander 2, 3

1 Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia
2 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
3 School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, UK
@article{CRMATH_2009__347_9-10_537_0,
     author = {Dragi\v{c}evi\'c, Oliver and Volberg, Alexander},
     title = {Bellman function and bilinear embedding theorem for {Schr\"odinger-type} operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {537--540},
     publisher = {Elsevier},
     volume = {347},
     number = {9-10},
     year = {2009},
     doi = {10.1016/j.crma.2009.02.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.02.004/}
}
TY  - JOUR
AU  - Dragičević, Oliver
AU  - Volberg, Alexander
TI  - Bellman function and bilinear embedding theorem for Schrödinger-type operators
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 537
EP  - 540
VL  - 347
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.02.004/
DO  - 10.1016/j.crma.2009.02.004
LA  - en
ID  - CRMATH_2009__347_9-10_537_0
ER  - 
%0 Journal Article
%A Dragičević, Oliver
%A Volberg, Alexander
%T Bellman function and bilinear embedding theorem for Schrödinger-type operators
%J Comptes Rendus. Mathématique
%D 2009
%P 537-540
%V 347
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.02.004/
%R 10.1016/j.crma.2009.02.004
%G en
%F CRMATH_2009__347_9-10_537_0
Dragičević, Oliver; Volberg, Alexander. Bellman function and bilinear embedding theorem for Schrödinger-type operators. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 537-540. doi : 10.1016/j.crma.2009.02.004. http://www.numdam.org/articles/10.1016/j.crma.2009.02.004/

[1] Berline, N.; Getzler, E.; Vergne, M. Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 2004

[2] A. Carbonaro, Functional calculus for some perturbations of the Ornstein–Uhlenbeck operator, Math. Z., in press

[3] Dragičević, O.; Volberg, A. Bellman functions and dimensionless estimates of Littlewood–Paley type, J. Oper. Theory, Volume 56 (2006) no. 1, pp. 167-198

[4] Dragičević, O.; Volberg, A. Linear dimension-free estimates for the Hermite–Riesz transforms | arXiv

[5] Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995

[6] Nazarov, F.; Treil, S. The Hunt for a Bellman function: applications to estimates of singular integral operators and to other classical problems in harmonic analysis, St. Petersburg Math. J., Volume 8 (1997) no. 5, pp. 721-824

[7] Simon, B. Kato's inequality and the comparison of semigroups, J. Funct. Anal., Volume 32 (1979) no. 1, pp. 97-101

Cited by Sources: