Given with a smooth periodic potential, for and , we prove scattering for small solutions to
On étudie l'existence de l'opérateur de scattering pour le problème de Cauchy suivant :
Accepted:
Published online:
@article{CRMATH_2009__347_5-6_243_0, author = {Cuccagna, Scipio and Visciglia, Nicola}, title = {Scattering for small energy solutions of {NLS} with periodic potential in {1D}}, journal = {Comptes Rendus. Math\'ematique}, pages = {243--247}, publisher = {Elsevier}, volume = {347}, number = {5-6}, year = {2009}, doi = {10.1016/j.crma.2009.01.028}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.01.028/} }
TY - JOUR AU - Cuccagna, Scipio AU - Visciglia, Nicola TI - Scattering for small energy solutions of NLS with periodic potential in 1D JO - Comptes Rendus. Mathématique PY - 2009 SP - 243 EP - 247 VL - 347 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.01.028/ DO - 10.1016/j.crma.2009.01.028 LA - en ID - CRMATH_2009__347_5-6_243_0 ER -
%0 Journal Article %A Cuccagna, Scipio %A Visciglia, Nicola %T Scattering for small energy solutions of NLS with periodic potential in 1D %J Comptes Rendus. Mathématique %D 2009 %P 243-247 %V 347 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.01.028/ %R 10.1016/j.crma.2009.01.028 %G en %F CRMATH_2009__347_5-6_243_0
Cuccagna, Scipio; Visciglia, Nicola. Scattering for small energy solutions of NLS with periodic potential in 1D. Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 243-247. doi : 10.1016/j.crma.2009.01.028. http://www.numdam.org/articles/10.1016/j.crma.2009.01.028/
[1] Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, 2003
[2] Dispersion for Schrödinger equation with periodic potential in 1D, Comm. Partial Differential Equations, Volume 33 (2008) no. 11, pp. 2064-2095
[3] On asymptotic stability of ground states of NLS with a finite bands periodic potential in 1D | arXiv
[4] Time decay of finite energy solutions of the nonlinear Klein Gordon and Schrödinger equations, Ann. Inst. H. Poincaré A, Volume 43 (1985), pp. 399-442
[5] Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980
Cited by Sources: