Let u be a nilpotent endomorphism of a finite dimensional vector space. The Springer fiber over u, denoted by , is the variety of complete flags stable by u. We determine the Betti numbers of . To do this, we construct a cell decomposition of . The codimension of the cells is similar to a Coxeter length, this makes our cell decomposition well suited for the calculation of Betti numbers.
Soit u un endomorphisme nilpotent d'un espace vectoriel de dimension finie. La fibre de Springer au-dessus de u, notée , est la variété des drapeaux complets stables par u. On détermine les nombres de Betti de . Dans ce but, on construit une décomposition cellulaire de . La codimension des cellules est similaire à une longueur de Coxeter, donc notre décomposition cellulaire est adaptée au calcul des nombres de Betti.
Accepted:
Published online:
@article{CRMATH_2009__347_5-6_283_0, author = {Fresse, Lucas}, title = {Nombres de {Betti} des fibres de {Springer} de type {\protect\emph{A}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {283--287}, publisher = {Elsevier}, volume = {347}, number = {5-6}, year = {2009}, doi = {10.1016/j.crma.2009.01.014}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.01.014/} }
TY - JOUR AU - Fresse, Lucas TI - Nombres de Betti des fibres de Springer de type A JO - Comptes Rendus. Mathématique PY - 2009 SP - 283 EP - 287 VL - 347 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.01.014/ DO - 10.1016/j.crma.2009.01.014 LA - fr ID - CRMATH_2009__347_5-6_283_0 ER -
Fresse, Lucas. Nombres de Betti des fibres de Springer de type A. Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 283-287. doi : 10.1016/j.crma.2009.01.014. http://www.numdam.org/articles/10.1016/j.crma.2009.01.014/
[1] Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math., vol. 946, Springer-Verlag, Berlin, New York, 1982
[2] The unipotent variety of a semisimple group, Proc. Colloq. Alg. Geom., Tata Institute, Oxford Univ. Press, London, 1969, pp. 373-391
Cited by Sources: