Théorie des groupes
Mesures stationnaires et fermés invariants des espaces homogènes
Comptes Rendus. Mathématique, Tome 347 (2009) no. 1-2, pp. 9-13.

Soient G un groupe de Lie réel simple, Λ un réseau de G et Γ un sous-groupe Zariski dense de G. On montre que toute orbite de Γ dans le quotient X=G/Λ est finie ou dense. Soit μ une probabilité sur G dont le support est compact et engendre un sous-groupe Zariski dense de G. On montre que toute probabilité μ-stationnaire et μ-ergodique sur X est de support fini ou est G-invariante.

Let G be a real simple Lie group, Λ be a lattice of G and Γ be a Zariski dense subgroup of G. We prove that every Γ-orbit in the quotient X=G/Λ is either finite or dense. Let μ be a probability measure on G whose support is compact and generates a Zariski dense subgroup of G. We prove that every μ-ergodic μ-stationary probability measure on X either has finite support or is G-invariant.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.11.001
Benoist, Yves 1 ; Quint, Jean-François 2

1 CNRS – Université Paris-Sud, 91405 Orsay cedex, France
2 CNRS – Université Paris-Nord, 93430 Villetaneuse, France
@article{CRMATH_2009__347_1-2_9_0,
     author = {Benoist, Yves and Quint, Jean-Fran\c{c}ois},
     title = {Mesures stationnaires et ferm\'es invariants des espaces homog\`enes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {9--13},
     publisher = {Elsevier},
     volume = {347},
     number = {1-2},
     year = {2009},
     doi = {10.1016/j.crma.2008.11.001},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.11.001/}
}
TY  - JOUR
AU  - Benoist, Yves
AU  - Quint, Jean-François
TI  - Mesures stationnaires et fermés invariants des espaces homogènes
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 9
EP  - 13
VL  - 347
IS  - 1-2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.11.001/
DO  - 10.1016/j.crma.2008.11.001
LA  - fr
ID  - CRMATH_2009__347_1-2_9_0
ER  - 
%0 Journal Article
%A Benoist, Yves
%A Quint, Jean-François
%T Mesures stationnaires et fermés invariants des espaces homogènes
%J Comptes Rendus. Mathématique
%D 2009
%P 9-13
%V 347
%N 1-2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.11.001/
%R 10.1016/j.crma.2008.11.001
%G fr
%F CRMATH_2009__347_1-2_9_0
Benoist, Yves; Quint, Jean-François. Mesures stationnaires et fermés invariants des espaces homogènes. Comptes Rendus. Mathématique, Tome 347 (2009) no. 1-2, pp. 9-13. doi : 10.1016/j.crma.2008.11.001. http://www.numdam.org/articles/10.1016/j.crma.2008.11.001/

[1] Blanchard, F. K-flots et théorème de renouvellement, Z. Wahrsch. verw. Gebiete, Volume 36 (1976), pp. 345-358

[2] Bourgain, J.; Furman, A.; Lindenstrauss, E.; Mozes, S. Invariant measures and stiffness for non-abelian groups of toral automorphisms, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 737-742

[3] Bufetov, A. Convergence of spherical averages for actions of free groups, Ann. of Math., Volume 155 (2002), pp. 929-944

[4] Conze, J.-P. Extensions de systèmes dynamiques par des groupes compacts, Ann. Inst. H. Poincaré, Volume 8 (1972), pp. 33-66

[5] Einsiedler, M.; Katok, A.; Lindenstrauss, E. Invariant measures and the set of exceptions to Littlewood's conjecture, Ann. of Math., Volume 164 (2006), pp. 513-560

[6] Eskin, A.; Margulis, G. Recurrence properties of random walks on finite volume homogeneous manifolds, Random Walks and Geometry, W. de Gruiter, 2004, pp. 431-444

[7] Eskin, A.; Mozes, S.; Shah, N. Unipotent flows and counting lattice points on homogeneous varieties, Ann. of Math., Volume 143 (1996), pp. 253-299

[8] Furstenberg, H. Noncommuting random products, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 377-428

[9] Guivarc'h, Y.; Raugi, A. Actions of large semigroups and random walks on isometric extensions of boundaries, Ann. Sci. Ecole Norm. Sup., Volume 40 (2007), pp. 209-249

[10] Guivarc'h, Y.; Starkov, A. Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 767-802

[11] Katok, A.; Spatzier, R. Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems, Volume 16 (1996), pp. 751-778

[12] Margulis, G. Problems and conjectures in rigidity theory, Mathematics: Frontiers and Perspectives, Amer. Math. Soc., 2000, pp. 161-174

[13] Margulis, G.; Tomanov, G. Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., Volume 116 (1994), pp. 347-392

[14] Muchnik, R. Semigroup actions on Tn, Geom. Dedicata, Volume 110 (2005), pp. 1-47

[15] Ratner, M. On Raghunathan's measure conjecture, Ann. of Math., Volume 134 (1991), pp. 545-607

[16] Ratner, M. Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J., Volume 63 (1991), pp. 235-280

[17] Rohlin, V.A. Lectures on the entropy theory of measure-preserving transformations, Russian Math. Surveys, Volume 22 (1967), pp. 1-54

[18] Shah, N. Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements, in Lie groups and ergodic theory, Tata Inst. Fund. Res. Stud. Math., Volume 14 (1998), pp. 229-271

Cité par Sources :