Probability Theory
The least singular value of a random square matrix is O(n1/2)
Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 893-896.

Let A be a matrix whose entries are real i.i.d. centered random variables with unit variance and suitable moment assumptions. Then the smallest singular value sn(A) is of order n1/2 with high probability. The lower estimate of this type was proved recently by the authors; in this Note we establish the matching upper estimate.

Soit A une matrice dont les entrées sont des variables aléatoires centrées réelles i.i.d. de variance 1 vérifiant une hypothèse adéquate de moment. Alors la plus petite valeur singulière sn(A) est de l'ordre de n1/2 avec grande probabilité. La minoration de sn(A) a été récemment obtenue par les auteurs ; dans cette Note, nous prouvons la majoration.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.07.009
Rudelson, Mark 1; Vershynin, Roman 2

1 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
2 Department of Mathematics, University of California, Davis, CA 95616, USA
@article{CRMATH_2008__346_15-16_893_0,
     author = {Rudelson, Mark and Vershynin, Roman},
     title = {The least singular value of a random square matrix is $ \mathrm{O}({n}^{-1/2})$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {893--896},
     publisher = {Elsevier},
     volume = {346},
     number = {15-16},
     year = {2008},
     doi = {10.1016/j.crma.2008.07.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.07.009/}
}
TY  - JOUR
AU  - Rudelson, Mark
AU  - Vershynin, Roman
TI  - The least singular value of a random square matrix is $ \mathrm{O}({n}^{-1/2})$
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 893
EP  - 896
VL  - 346
IS  - 15-16
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.07.009/
DO  - 10.1016/j.crma.2008.07.009
LA  - en
ID  - CRMATH_2008__346_15-16_893_0
ER  - 
%0 Journal Article
%A Rudelson, Mark
%A Vershynin, Roman
%T The least singular value of a random square matrix is $ \mathrm{O}({n}^{-1/2})$
%J Comptes Rendus. Mathématique
%D 2008
%P 893-896
%V 346
%N 15-16
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.07.009/
%R 10.1016/j.crma.2008.07.009
%G en
%F CRMATH_2008__346_15-16_893_0
Rudelson, Mark; Vershynin, Roman. The least singular value of a random square matrix is $ \mathrm{O}({n}^{-1/2})$. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 893-896. doi : 10.1016/j.crma.2008.07.009. http://www.numdam.org/articles/10.1016/j.crma.2008.07.009/

[1] Edelman, A. Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl., Volume 9 (1988), pp. 543-560

[2] Rudelson, M.; Vershynin, R. The Littlewood–Offord problem and invertibility of random matrices, Adv. Math., Volume 218 (2008), pp. 600-633

[3] M. Rudelson, R. Vershynin, The smallest singular value of a random rectangular matrix, submitted for publication

[4] von Neumann, J. Collected Works, vol. V: Design of Computers, Theory of Automata and Numerical Analysis (Taub, A.H., ed.), A Pergamon Press Book The Macmillan Co., New York, 1963

Cited by Sources: