Mathematical Problems in Mechanics
Global weak solutions for asymmetric incompressible fluids with variable density
Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 575-578.

We establish the existence of global in time weak solutions for the equations of asymmetric incompressible fluids with variable density, when the initial density is not necessarily strictly positive.

On établit l'existence de solutions faibles globales en temps pour les équations des fluides incompressibles asymétriques à densité variable, dans le cas oú la densité initiale n'est pas strictement positive.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.03.008
Braz e Silva, Pablo 1; Santos, Eduardo G. 2

1 Departamento de Matemática, Universidade Federal de Pernambuco, Recife, PE, 50740-540, Brazil
2 Departamento de Matemática, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
@article{CRMATH_2008__346_9-10_575_0,
     author = {Braz e Silva, Pablo and Santos, Eduardo G.},
     title = {Global weak solutions for asymmetric incompressible fluids with variable density},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {575--578},
     publisher = {Elsevier},
     volume = {346},
     number = {9-10},
     year = {2008},
     doi = {10.1016/j.crma.2008.03.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.03.008/}
}
TY  - JOUR
AU  - Braz e Silva, Pablo
AU  - Santos, Eduardo G.
TI  - Global weak solutions for asymmetric incompressible fluids with variable density
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 575
EP  - 578
VL  - 346
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.03.008/
DO  - 10.1016/j.crma.2008.03.008
LA  - en
ID  - CRMATH_2008__346_9-10_575_0
ER  - 
%0 Journal Article
%A Braz e Silva, Pablo
%A Santos, Eduardo G.
%T Global weak solutions for asymmetric incompressible fluids with variable density
%J Comptes Rendus. Mathématique
%D 2008
%P 575-578
%V 346
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.03.008/
%R 10.1016/j.crma.2008.03.008
%G en
%F CRMATH_2008__346_9-10_575_0
Braz e Silva, Pablo; Santos, Eduardo G. Global weak solutions for asymmetric incompressible fluids with variable density. Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 575-578. doi : 10.1016/j.crma.2008.03.008. http://www.numdam.org/articles/10.1016/j.crma.2008.03.008/

[1] Ariman, T.; Turk, M. On steady and pulsatile flow of blood, J. Appl. Mech., Volume 41 (1974), pp. 1-7

[2] Boldrini, J.L.; Rojas-Medar, M.A.; Fernández-Cara, E. Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids, J. Math. Pures Appl., Volume 82 (2003) no. 11, pp. 1499-1525

[3] Condiff, D.W.; Dahler, J.S. Fluid mechanical aspects of antisymmetric stress, Phys. Fluids, Volume 7 (1964), pp. 842-854

[4] Ferrari, C. On lubrication with structured fluids, Appl. Anal., Volume 15 (1983), pp. 127-146

[5] Lukaszewicz, G. On nonstationary flows of incompressible asymmetric fluids, Math. Methods Appl. Sci., Volume 13 (1990) no. 3, pp. 219-232

[6] Lukaszewicz, G. Micropolar Fluids. Theory and Applications, Modelling and Simulation in Science, Engineering & Technology, Birkhäuser Boston, Inc., Boston, MA, 1999

[7] Prakash, J.; Sinha, P. Lubrication theory for micropolar fluids and its application to a journal bearing, Int. J. Engrg. Sci., Volume 13 (1975) no. 3, pp. 217-323

[8] J. Simon, Existencia de solución del problema de Navier–Stokes con densidad variable, Existence of solution for the variable density Navier–Stokes problem, Lecture notes at the University of Sevilla, Spain (in Spanish)

[9] Simon, J. Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal., Volume 21 (1990) no. 5, pp. 1093-1117

[10] Simon, J. Compact sets in the space Lp(0,T;B), Ann. Mat. Pura Appl., Volume 4 (1987) no. 146, pp. 65-96

[11] Temam, R. Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983

Cited by Sources: