Partial Differential Equations
Macroscopic limit of self-driven particles with orientation interaction
[Limite macroscopique de particules autopropulsées avec interaction d'orientation]
Comptes Rendus. Mathématique, Tome 345 (2007) no. 10, pp. 555-560.

L'algorithme discret de Couzin–Vicsek (CVA) a été proposé pour modéliser l'interaction d'individus au sein de sociétés animales comme les bancs de poissons. Dans cette Note, nous proposons une version cinétique (champ-moyen) de l'algorithme CVA et en donnons la limite macroscopique formelle. Le modèle macroscopique final comprend une équation de conservation pour la densité des individus et une équation non-conservative pour le vecteur directeur de la vitesse moyenne. Ce résultat est basé sur l'introduction d'un concept non-conventionnel d'invariant collisionnel de l'opérateur de collision.

The discrete Couzin–Vicsek algorithm (CVA) has been proposed to model the interactions of individuals among animal societies such as schools of fish. In this Note, we propose a kinetic (mean-field) version of the CVA model and provide its formal macroscopic limit. The final macroscopic model involves a conservation equation for the density of the individuals and a non-conservative equation for the director of the mean velocity. The result is based on the introduction of a non-conventional concept of a collisional invariant of the collision operator.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.10.024
Degond, Pierre 1 ; Motsch, Sébastien 1

1 Institut de mathématiques de Toulouse, UMR 5219 (CNRS-UPS-INSA-UT1-UT2), équipe MIP, Université P. Sabatier, 31062 Toulouse cedex 09, France
@article{CRMATH_2007__345_10_555_0,
     author = {Degond, Pierre and Motsch, S\'ebastien},
     title = {Macroscopic limit of self-driven particles with orientation interaction},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {555--560},
     publisher = {Elsevier},
     volume = {345},
     number = {10},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.10.024/}
}
TY  - JOUR
AU  - Degond, Pierre
AU  - Motsch, Sébastien
TI  - Macroscopic limit of self-driven particles with orientation interaction
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 555
EP  - 560
VL  - 345
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.10.024/
DO  - 10.1016/j.crma.2007.10.024
LA  - en
ID  - CRMATH_2007__345_10_555_0
ER  - 
%0 Journal Article
%A Degond, Pierre
%A Motsch, Sébastien
%T Macroscopic limit of self-driven particles with orientation interaction
%J Comptes Rendus. Mathématique
%D 2007
%P 555-560
%V 345
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.10.024/
%R 10.1016/j.crma.2007.10.024
%G en
%F CRMATH_2007__345_10_555_0
Degond, Pierre; Motsch, Sébastien. Macroscopic limit of self-driven particles with orientation interaction. Comptes Rendus. Mathématique, Tome 345 (2007) no. 10, pp. 555-560. doi : 10.1016/j.crma.2007.10.024. http://www.numdam.org/articles/10.1016/j.crma.2007.10.024/

[1] Aldana, M.; Huepe, C. Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach, J. Stat. Phys., Volume 112 (2003) no. 1/2, pp. 135-153

[2] Couzin, I.D.; Krause, J.; James, R.; Ruxton, G.D.; Franks, N.R. Collective memory and spatial sorting in animal groups, J. Theor. Biol., Volume 218 (2002), pp. 1-11

[3] Cucker, F.; Smale, S. Emergent behavior in flocks, IEEE Trans. Automat. Control, Volume 52 (2007), pp. 852-862

[4] P. Degond, S. Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior, preprint

[5] P. Degond, S. Motsch, Continuum limit of self-driven particles with orientation interaction, preprint

[6] D'Orsogna, M.R.; Chuang, Y.L.; Bertozzi, A.L.; Chayes, L.S. Self-propelled particles with soft-core interactions: pattern, stability and collapse, Lett. Phys. Rev., Volume 96 (2006), p. 104302

[7] J. Gautrais, S. Motsch, C. Jost, M. Soria, A. Campo, R. Fournier, S. Bianco, G. Théraulaz, Analyzing fish movement as a persistent turning walker, in preparation

[8] Grégoire, G.; Chaté, H. Onset of collective and cohesive motion, Lett. Phys. Rev., Volume 92 (2004), p. 025702

[9] Kulinskii, V.L.; Ratushnaya, V.I.; Zvelindovsky, A.V.; Bedeaux, D. Hydrodynamic model for a system of self-propelling particles with conservative kinematic constraints, Europhys. Lett., Volume 71 (2005), pp. 207-213

[10] Mogilner, A.; Edelstein-Keshet, L. A non-local model for a swarm, J. Math. Biol., Volume 38 (1999), pp. 534-570

[11] Mogilner, A.; Edelstein-Keshet, L.; Bent, L.; Spiros, A. Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., Volume 47 (2003), pp. 353-389

[12] Ratushnaya, V.I.; Bedeaux, D.; Kulinskii, V.L.; Zvelindovsky, A.V. Collective behaviour of self propelling particles with kinematic constraints; the relations between the discrete and the continuous description, Physica A, Volume 381 (2007), pp. 39-46

[13] Ratushnaya, V.I.; Kulinskii, V.L.; Zvelindovsky, A.V.; Bedeaux, D. Hydrodynamic model for the system of self propelling particles with conservative kinematic constraints; two dimensional stationary solutions, Physica A, Volume 366 (2006), pp. 107-114

[14] Topaz, C.M.; Bertozzi, A.L. Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., Volume 65 (2004), pp. 152-174

[15] Topaz, C.M.; Bertozzi, A.L.; Lewis, M.A. A nonlocal continuum model for biological aggregation, Bull. Math. Biol., Volume 68 (2006), pp. 1601-1623

[16] Vicsek, T.; Szirok, A.; Ben-Jacob, B.; Cohen, I.; Shochet, O. Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., Volume 75 (1995) no. 6, pp. 1226-1229

Cité par Sources :