Mathematical Physics
Geometric dissipation in kinetic equations
[Dissipation géométrique dans les équations cinétiques]
Comptes Rendus. Mathématique, Tome 345 (2007) no. 5, pp. 297-302.

Une nouvelle approche est proposée pour modeliser la dissipation dans les équations cinétiques. Cette approche produit une structure à double crochet dans l'espace des phases qui aboutit aux équations cinétiques d'une dynamique coadjointe après transformations canoniques. L'exemple de Vlasov admet alors des solutions pour une seule particule. Ces solutions sont réversibles ; l'entropie totale est un Casimir et elle est donc préservée.

A new symplectic variational approach is developed for modeling dissipation in kinetic equations. This approach yields a double bracket structure in phase space which generates kinetic equations representing coadjoint motion under canonical transformations. The Vlasov example admits measure-valued single-particle solutions. Such solutions are reversible. The total entropy is a Casimir, and thus it is preserved.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.07.001
Holm, Darryl D. 1, 2 ; Putkaradze, Vakhtang 3, 4 ; Tronci, Cesare 1, 5

1 Department of Mathematics, Imperial College London, London SW7 2AZ, UK
2 Computer and Computational Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3 Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA
4 Institute for Theoretical Physics, Universität Köln, Zuplicher Str. 77, 50968 Köln, Germany
5 TERA Foundation for Oncological Hadrontherapy, 11 V. Puccini, Novara 28100, Italy
@article{CRMATH_2007__345_5_297_0,
     author = {Holm, Darryl D. and Putkaradze, Vakhtang and Tronci, Cesare},
     title = {Geometric dissipation in kinetic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {297--302},
     publisher = {Elsevier},
     volume = {345},
     number = {5},
     year = {2007},
     doi = {10.1016/j.crma.2007.07.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.07.001/}
}
TY  - JOUR
AU  - Holm, Darryl D.
AU  - Putkaradze, Vakhtang
AU  - Tronci, Cesare
TI  - Geometric dissipation in kinetic equations
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 297
EP  - 302
VL  - 345
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.07.001/
DO  - 10.1016/j.crma.2007.07.001
LA  - en
ID  - CRMATH_2007__345_5_297_0
ER  - 
%0 Journal Article
%A Holm, Darryl D.
%A Putkaradze, Vakhtang
%A Tronci, Cesare
%T Geometric dissipation in kinetic equations
%J Comptes Rendus. Mathématique
%D 2007
%P 297-302
%V 345
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.07.001/
%R 10.1016/j.crma.2007.07.001
%G en
%F CRMATH_2007__345_5_297_0
Holm, Darryl D.; Putkaradze, Vakhtang; Tronci, Cesare. Geometric dissipation in kinetic equations. Comptes Rendus. Mathématique, Tome 345 (2007) no. 5, pp. 297-302. doi : 10.1016/j.crma.2007.07.001. http://www.numdam.org/articles/10.1016/j.crma.2007.07.001/

[1] Bloch, A.; Krishnaprasad, P.S.; Marsden, J.E.; Ratiu, T.S. The Euler–Poincaré equations and double bracket dissipation, Comm. Math. Phys., Volume 175 (1996), pp. 1-42

[2] Chandrasekhar, S. Liquid Crystals, Cambridge University Press, Cambridge, 1992

[3] de Gennes, P.G.; Prost, J. The Physics of Liquid Crystals, Oxford University Press, Oxford, 1993

[4] Fokker, A.D.; Kolmogorov, A.N. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann., Volume 43 (1914), pp. 810-820

[5] Gibbons, J. Collisionless Boltzmann equations and integrable moment equations, Physica D, Volume 3 (1981), pp. 503-511

[6] J. Gibbons, D.D. Holm, C. Tronci, Singular solutions for geodesic flows of Vlasov moments, in: Proceedings of the MSRI workshop “Probability, Geometry and Integrable Systems”, Celebration of Henry McKean's 75th birthday, Cambridge University Press, Cambridge, 2007, in press, also at | arXiv

[7] Gibbons, J.; Holm, D.D.; Tronci, C. Vlasov moments, integrable systems and singular solutions (Phys. Lett. A, submitted for publication, also at) | arXiv

[8] Gilbert, T.L. A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., Volume 100 (1955), pp. 1243-1255

[9] Holm, D.D.; Putkaradze, V. Aggregation of finite-size particles with variable mobility, Phys. Rev. Lett., Volume 95 (2005), pp. 106-226

[10] Holm, D.D.; Putkaradze, V. Formation of clumps and patches in self-aggregation of finite size particles, Physica D, Volume 220 (2006), pp. 183-196

[11] Holm, D.D.; Putkaradze, V. Formation and evolution of singularities in anisotropic geometric continua, Physica D (2007) | DOI

[12] D.D. Holm, V. Putkaradze, C. Tronci, Geometric evolution equations for order parameters, Physica D, submitted for publication

[13] Kandrup, H.E. The secular instability of axisymmetric collisionless star cluster, Astrophys. J., Volume 380 (1991), pp. 511-514

[14] Kaufman, A.N. Dissipative Hamiltonian systems: a unifying principle, Phys. Lett. A, Volume 100 (1984), pp. 419-422

[15] Kupershmidt, B.A.; Manin, Ju.I. Long wave equations with a free surface. II. The Hamiltonian structure and the higher equations, Funktsional. Anal. i Prilozhen., Volume 12 (1978), pp. 25-37

[16] Morrison, P.J. Bracket formulation for irreversible classical fields, Phys. Lett. A, Volume 100 (1984), pp. 423-427

[17] Otto, F. The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001), pp. 101-174

[18] Vlasov, A.A.; Vlasov, A.A., J. Phys. (USSR) (Many-Particle Theory and its Application to Plasma), Volume 9, Gordon and Breach, New York, 1945, pp. 25-40

Cité par Sources :