Complex Analysis
A new characterization of a class of pseudoconvex domains in C2
Comptes Rendus. Mathématique, Volume 344 (2007) no. 11, pp. 677-680.

By using the right inverse of the Cauchy–Fueter operator we obtain an explicit integral characterization of a class of pseudoconvex domains in C2.

En utilisant l'inverse à droite de l'opérateur de Cauchy–Fueter, nous démontrons une caractérisation en forme intégrale d'une classe de domaines pseudoconvexes en C2.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.04.014
Colombo, Fabrizio 1; Luna-Elizarrarás, M. Elena 2; Sabadini, Irene 1; Shapiro, Michael 2; Struppa, Daniele C. 3

1 Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano, Italy
2 Departamento de Matemáticas E.S.F.M. del I.P.N. 07338 México D.F., Mexico
3 Department of Mathematics and Computer Science, Chapman University, 92866 Orange, CA, USA
@article{CRMATH_2007__344_11_677_0,
     author = {Colombo, Fabrizio and Luna-Elizarrar\'as, M. Elena and Sabadini, Irene and Shapiro, Michael and Struppa, Daniele C.},
     title = {A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {677--680},
     publisher = {Elsevier},
     volume = {344},
     number = {11},
     year = {2007},
     doi = {10.1016/j.crma.2007.04.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.04.014/}
}
TY  - JOUR
AU  - Colombo, Fabrizio
AU  - Luna-Elizarrarás, M. Elena
AU  - Sabadini, Irene
AU  - Shapiro, Michael
AU  - Struppa, Daniele C.
TI  - A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 677
EP  - 680
VL  - 344
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.04.014/
DO  - 10.1016/j.crma.2007.04.014
LA  - en
ID  - CRMATH_2007__344_11_677_0
ER  - 
%0 Journal Article
%A Colombo, Fabrizio
%A Luna-Elizarrarás, M. Elena
%A Sabadini, Irene
%A Shapiro, Michael
%A Struppa, Daniele C.
%T A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$
%J Comptes Rendus. Mathématique
%D 2007
%P 677-680
%V 344
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.04.014/
%R 10.1016/j.crma.2007.04.014
%G en
%F CRMATH_2007__344_11_677_0
Colombo, Fabrizio; Luna-Elizarrarás, M. Elena; Sabadini, Irene; Shapiro, Michael; Struppa, Daniele C. A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$. Comptes Rendus. Mathématique, Volume 344 (2007) no. 11, pp. 677-680. doi : 10.1016/j.crma.2007.04.014. http://www.numdam.org/articles/10.1016/j.crma.2007.04.014/

[1] Colombo, F.; Sabadini, I.; Sommen, F.; Struppa, D.C. Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, vol. 39, Birkhäuser, Boston, 2004

[2] Fueter, R. Über einen Hartogs'schen Satz, Comm. Math. Helv., Volume 12 (1939), pp. 75-80

[3] Krantz, S. Function Theory of Several Complex Variables, John Wiley & Sons, New York, 1982

[4] Mitelman, I.; Shapiro, M.V. Differentiation of the Martinelli–Bochner integrals and the notion of hyperderivability, Math. Nachr., Volume 172 (1995), pp. 211-238

[5] Nôno, K. Characterization of domains of holomorphy by the existence of hyper-conjugate harmonic functions, Rev. Roum. Math. Pures Appl., Volume 31 (1986), pp. 159-161

[6] Ryan, J. Complex Clifford analysis and domains of holomorphy, J. Austral. Math. Soc. Ser. A, Volume 48 (1990), pp. 413-433

[7] Shapiro, M.; Vasilevski, N. On the Bergman kernel function in hypercomplex analysis, Acta Appl. Math., Volume 46 (1997), pp. 1-27

Cited by Sources: